Formalized Formal Logic

2.5. Löb's Theorem🔗

Löb's theorem loughly states that for any sentence σ, assume "if σ is provable, then σ is true", then σ is true.

🔗theorem
LO.FirstOrder.Arithmetic.löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ T] {σ : ArithmeticSentence} : T (Theory.standardProvability T) σ σ T σ
LO.FirstOrder.Arithmetic.löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ T] {σ : ArithmeticSentence} : T (Theory.standardProvability T) σ σ T σ

The argument can be formalized within arithmetic.

🔗theorem
LO.FirstOrder.Arithmetic.formalized_löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ T] {σ : ArithmeticSentence} : 𝗜𝚺₁ (Theory.standardProvability T) ((Theory.standardProvability T) σ σ) (Theory.standardProvability T) σ
LO.FirstOrder.Arithmetic.formalized_löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ T] {σ : ArithmeticSentence} : 𝗜𝚺₁ (Theory.standardProvability T) ((Theory.standardProvability T) σ σ) (Theory.standardProvability T) σ

In the perspective of modal logic, this is modal axiom L.