2.5. Löb's Theorem
Löb's theorem loughly states that for any sentence σ,
assume "if σ is provable, then σ is true", then σ is true.
theorem
LO.FirstOrder.Arithmetic.löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ ⪯ T] {σ : ArithmeticSentence} : T ⊢ ↑(Theory.standardProvability T) σ ➝ σ → T ⊢ σLO.FirstOrder.Arithmetic.löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ ⪯ T] {σ : ArithmeticSentence} : T ⊢ ↑(Theory.standardProvability T) σ ➝ σ → T ⊢ σ
The argument can be formalized within arithmetic.
theorem
LO.FirstOrder.Arithmetic.formalized_löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ ⪯ T] {σ : ArithmeticSentence} : 𝗜𝚺₁ ⊢ ↑(Theory.standardProvability T) (↑(Theory.standardProvability T) σ ➝ σ) ➝ ↑(Theory.standardProvability T) σLO.FirstOrder.Arithmetic.formalized_löb_theorem {T : ArithmeticTheory} [Theory.Δ₁ T] [𝗜𝚺₁ ⪯ T] {σ : ArithmeticSentence} : 𝗜𝚺₁ ⊢ ↑(Theory.standardProvability T) (↑(Theory.standardProvability T) σ ➝ σ) ➝ ↑(Theory.standardProvability T) σ
In the perspective of modal logic, this is modal axiom L.