Formalized Formal Logic

2.6. Tarski's Undefinability Theorem🔗

Tarski's undefinability theorem states that the arithmetical truth cannot be defined in arithmetic itself.

To show this, we first prove the below lemma. This lemma states that there is no predicate τ s.t. for any sentence σ, σ is provable in a theory T iff τ/[⌜σ⌝] is so.

🔗theorem
LO.FirstOrder.Arithmetic.not_exists_tarski_predicate {T : Theory ℒₒᵣ} [𝗜𝚺₁ T] [Consistent T] : ¬ τ, (σ : Semisentence ℒₒᵣ 0), T σ τ/[σ]
LO.FirstOrder.Arithmetic.not_exists_tarski_predicate {T : Theory ℒₒᵣ} [𝗜𝚺₁ T] [Consistent T] : ¬ τ, (σ : Semisentence ℒₒᵣ 0), T σ τ/[σ]

There is no predicate τ, s.t. for any sentence σ, σ is provable in T iff τ/[σ] is so.

Then, the main theorem is obtained by using theory T as True Arithmetic 𝗧𝗔.

🔗theorem
LO.FirstOrder.Arithmetic.undefinability_of_truth : ¬ τ, (σ : Sentence ℒₒᵣ), ⊧ₘ σ ⊧ₘ τ/[σ]
LO.FirstOrder.Arithmetic.undefinability_of_truth : ¬ τ, (σ : Sentence ℒₒᵣ), ⊧ₘ σ ⊧ₘ τ/[σ]

Tarski's Undefinability of Truth Theorem.