The graph of the exponential function can be defined by the $\Delta_0$-formula.
2.1. ISigma0
2.1.1. Exponential
The graph of exponential \mathrm{Exp}(x, y)
is definable by \Sigma_0
-fomrula,
and its inductive properties are proved in \mathsf{I}\Sigma_0
.
theorem
LO.ISigma0.exponential_definable.{u_1} {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝗜𝚺₀] : 𝚺₀-Relation LO.ISigma0.ExponentialLO.ISigma0.exponential_definable.{u_1} {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝗜𝚺₀] : 𝚺₀-Relation LO.ISigma0.Exponential
theorem
LO.ISigma0.Exponential.exponential_zero_one.{u_1} {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝗜𝚺₀] : LO.ISigma0.Exponential 0 1LO.ISigma0.Exponential.exponential_zero_one.{u_1} {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝗜𝚺₀] : LO.ISigma0.Exponential 0 1
theorem
LO.ISigma0.Exponential.exponential_succ_mul_two.{u_1} {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝗜𝚺₀] {x y : V} : LO.ISigma0.Exponential (x + 1) (2 * y) ↔ LO.ISigma0.Exponential x yLO.ISigma0.Exponential.exponential_succ_mul_two.{u_1} {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝗜𝚺₀] {x y : V} : LO.ISigma0.Exponential (x + 1) (2 * y) ↔ LO.ISigma0.Exponential x y
Other basic functions, such as \log x, |x|
are defined by using exponential.