1.1. Notation
Quantification of formulae are defined using de Bruijn index, but we can write terms and formulae by usual binder notation using macro.
variables x y z
is just an example and can take any number of ident
s.
e
is an expression of term/formula.
1.1.1. Binder Notation
Binder notation of term takes either form:
Term: ‘x y z. e’
, Formula: “x y z. e”
x y z
is the symbol for the bound variables,
k:num
-variables denotes the terms in Semiterm L ξ (n + $k)
/Semiformula L ξ (n + $k)
. (n
can be variable)
Term: ‘x y z | e’
, Formula: “x y z | e”
x y z
is the symbol for the free variables,
k:num
-variables denotes the terms in Semiterm L ξ n
/Semiformula L ξ n
. (n
can be variable)
Term: ‘e’
, Formula: “e”
An abbreviation of ‘ . e’
/“ . e”