Formalized Formal Logic

Monthly Report 2025/10🔗

This page is the monthly report summarizing commits between 2025/10/01 and 2025/11/01. There are 3 major topics in this month.

Set Theory and Consistency of ZFC

Author: Palalansoukî

-We formalized that ZFSet is a (standard) model of \mathsf{ZFC}.-

Update (2025/11): We use FirstOrder.SetTheory.Universe instead of ZFSet.

🔗theorem
LO.FirstOrder.SetTheory.Universe.models_zfc.{u} : FirstOrder.SetTheory.Universe ⊧ₘ* 𝗭𝗙𝗖
LO.FirstOrder.SetTheory.Universe.models_zfc.{u} : FirstOrder.SetTheory.Universe ⊧ₘ* 𝗭𝗙𝗖

As an obvious consequence, it can be proven that \mathsf{ZFC} is consistent.

🔗theorem
LO.FirstOrder.SetTheory.zfc_consistent : Entailment.Consistent 𝗭𝗙𝗖
LO.FirstOrder.SetTheory.zfc_consistent : Entailment.Consistent 𝗭𝗙𝗖

This result should not be seen as supporting the "consistency of mathematics" in the sense of Hilbert's Program. Rather, it is a natural consequence of Lean 4 possessing multiple type universes, and it is well-known that Lean is much stronger than \mathsf{ZFC + Con(ZFC)}. For detail, see Carneiro (2019)Mario Carneiro, 2019. The Type Theory of Lean. Master thesis, Carnegie Mellon University and Werner (1997)Benjamin. Werner, 1997. “Sets in types, types in sets”. arXiv:none.

Filteration of Neighborhood Semantics on Modal logic

Author: @SnO2WMaN

Filtration in neighborhood semantics for modal logic has been studied mainly for extensions of logic E by the axioms M, C, and N, as well as for non-iterative axioms (i.e., those of modal depth at most 1) by Lewis's Theorem (Lewis (1974)D. Lewis (October 1974). “Intensional Logics without Iterative Axioms”. Journal of Philosophical Logic.3 4.). However, beyond these cases, very few results are known.

Recently, Kopnev (2023)K. Kopnev, 2023. “The Finite Model Property of Some Non-normal Modal Logics with the Transitivity Axiom”. arXiv:2305.08605 showed that logics containing axiom 4 also enjoy the finite frame property (FFP) via filtration. Since axiom 4 is not non-iterative, Lewis’s theorem cannot be applied, and a nontrivial construction of the filtration is required. However, Kopnev’s work exists only as an arXiv preprint and does not have been reviewed and officially published. During our verification, we found one missing case in the proof, but the main argument remains correct once this gap is addressed.

In this project, we formalized Kopnev’s result. In particular, formalized the FFP of logics E4, ET4, EMC4 and EMT4 via filtration.

🔗theorem
LO.Modal.E4.Neighborhood.finite_complete : Complete Modal.E4 Modal.Neighborhood.FrameClass.finite_E4
LO.Modal.E4.Neighborhood.finite_complete : Complete Modal.E4 Modal.Neighborhood.FrameClass.finite_E4

FFP of Modal.E4

🔗theorem
LO.Modal.ET4.Neighborhood.finite_complete : Complete Modal.ET4 Modal.Neighborhood.FrameClass.finite_ET4
LO.Modal.ET4.Neighborhood.finite_complete : Complete Modal.ET4 Modal.Neighborhood.FrameClass.finite_ET4

FFP of Modal.ET4

🔗theorem
LO.Modal.EMC4.Neighborhood.finite_complete : Complete Modal.EMC4 Modal.Neighborhood.FrameClass.finite_EMC4
LO.Modal.EMC4.Neighborhood.finite_complete : Complete Modal.EMC4 Modal.Neighborhood.FrameClass.finite_EMC4

FFP of Modal.EMC4

🔗theorem
LO.Modal.EMT4.Neighborhood.finite_complete : Complete Modal.EMT4 Modal.Neighborhood.FrameClass.finite_EMT4
LO.Modal.EMT4.Neighborhood.finite_complete : Complete Modal.EMT4 Modal.Neighborhood.FrameClass.finite_EMT4

FFP of Modal.EMT4

And as easy corollaries about and N, also formalized in FFP of EN4, EMCN4, EMNT4.

🔗theorem
LO.Modal.EN4.Neighborhood.finite_complete : Complete Modal.EN4 Modal.Neighborhood.FrameClass.finite_EN4
LO.Modal.EN4.Neighborhood.finite_complete : Complete Modal.EN4 Modal.Neighborhood.FrameClass.finite_EN4

FFP of Modal.EN4

🔗theorem
LO.Modal.EMNT4.Neighborhood.finite_complete : Complete Modal.EMNT4 Modal.Neighborhood.FrameClass.finite_EMNT4
LO.Modal.EMNT4.Neighborhood.finite_complete : Complete Modal.EMNT4 Modal.Neighborhood.FrameClass.finite_EMNT4

FFP of Modal.EMNT4

🔗theorem
LO.Modal.EMCN4.Neighborhood.finite_complete : Complete Modal.EMCN4 Modal.Neighborhood.FrameClass.finite_EMCN4
LO.Modal.EMCN4.Neighborhood.finite_complete : Complete Modal.EMCN4 Modal.Neighborhood.FrameClass.finite_EMCN4

FFP of Modal.EMCN4

Remarks that EMCN4 is equivalent to K4.

Author note: We noticed that forgot to formalize the FFP of EMCNT4, that is equivalent to S4, it might be proved easily.

More information might be found in chapter of neightborhood semantics on modal logic. (work in progress)

Interpretability Logic and Veltman Semantics

Author: @SnO2WMaN

Author note: This report described below is under active development, and some parts may no longer match the implementation at the time of reading. For precise details, please refer to the latest code or the section Interpretability Logic (in progress).

As a further extension of provability logic, observed interpretations between theories are treated as modal operators. This study is called interpretability logic. Briefly, in interpretability logic, in addition to the usual unary modality \Box, a binary modality \rhd is introduced.

During this month’s progress in FFL, we formalized several syntactic facts of interpretability logic and introduced Veltman semantics, which is extension of the Kripke semantics by de Jongh and Veltman, and established its soundness. In this report, we do not discuss the arithmetical completeness of interpretability. The long-term goal of FFL is to eventually formalize. Refer to overview of interpretability logic, see Visser (1997)Albert. Visser, 1997. “An Overview of Interpretability Logic”. arXiv:none, Japaridze and de Jongh (1998)Giorgi. Japaridze and Dick. de Jongh, 1998. “The Logic of Provability”. arXiv:none, Joosten (2004)Joost Johannes. Joosten, 2004. Interpretability Formalized. Ph.D Thesis, Utrecht University.

Formulas of interpretability logic are defined by extending the language of modal logic with the binary connective rhd, which we will denote by .

🔗inductive type
LO.InterpretabilityLogic.Formula.{u_2} (α : Type u_2) : Type u_2
LO.InterpretabilityLogic.Formula.{u_2} (α : Type u_2) : Type u_2

Constructors

atom.{u_2} {α : Type u_2} :
  α  InterpretabilityLogic.Formula α
falsum.{u_2} {α : Type u_2} :
  InterpretabilityLogic.Formula α
box.{u_2} {α : Type u_2} :
  InterpretabilityLogic.Formula α 
    InterpretabilityLogic.Formula α

Basic axioms and rules of interpretability logic are as follows:

  • \mathsf{J1}: \Box(\varphi \rightarrow \psi) \rightarrow (\varphi \rhd \psi)

  • \mathsf{J2}: (\varphi \rhd \psi) \wedge (\psi \rhd \chi) \rightarrow (\varphi \rhd \chi)

  • \mathsf{J2^+}: \varphi \rhd (\psi \lor \chi) \to \psi \rhd \chi \varphi \rhd \chi

  • \mathsf{J3}: \varphi \rhd \chi \to \psi \rhd \chi \to (\varphi \lor \psi) \rhd \chi

  • \mathsf{J4}: \varphi \rhd \psi \to \Diamond \varphi \to \Diamond \psi

  • \mathsf{J4^+}: \Box(\varphi \to \psi) \to (\chi \rhd \varphi \to \chi \rhd \psi)

  • \mathsf{J5}: \Diamond \varphi \rhd \varphi

  • \mathsf{J6}: \Box \varphi \leftrightarrow \lnot \varphi \rhd \bot

  • \mathrm{(R1)}: From \varphi \rightarrow \psi infer \varphi \rhd \psi

  • \mathrm{(R2)}: From \varphi \rightarrow \psi infer \psi \rhd \chi \rightarrow \varphi \rhd \chi

We defines the logics by usual Hilbert system extending modal logic \mathbf{GL}:

  • \mathbf{IL^-} is obtained by adding axioms \mathsf{J3} and \mathsf{J6} and rules \mathrm{(R1)} and \mathrm{(R2)}.

  • \mathbf{IL^-}(\mathsf{X}) is obtained by adding axioms \mathsf{X} to \mathbf{IL^-}, such as \mathbf{IL^-}(\mathsf{J2}, \mathsf{J5}).

  • \mathbf{CL} is obtained by adding axioms \mathsf{J1}, \mathsf{J2}, \mathsf{J3}, and \mathsf{J4}.

  • \mathbf{IL} is obtained by adding axioms \mathsf{J5} to \mathbf{CL}.

We can prove by syntactically that \mathbf{CL} is equivalent to \mathbf{IL^-}(\mathsf{J1}, \mathsf{J2}), and \mathbf{IL} is equivalent to \mathbf{IL^-}(\mathsf{J1}, \mathsf{J2}, \mathsf{J5}).

🔗theorem
LO.InterpretabilityLogic.equiv_CL_ILMinus_J1_J2 : InterpretabilityLogic.CL InterpretabilityLogic.ILMinus_J1_J2
LO.InterpretabilityLogic.equiv_CL_ILMinus_J1_J2 : InterpretabilityLogic.CL InterpretabilityLogic.ILMinus_J1_J2
🔗theorem
LO.InterpretabilityLogic.equiv_IL_ILMinus_J1_J2_J5 : InterpretabilityLogic.IL InterpretabilityLogic.ILMinus_J1_J2_J5
LO.InterpretabilityLogic.equiv_IL_ILMinus_J1_J2_J5 : InterpretabilityLogic.IL InterpretabilityLogic.ILMinus_J1_J2_J5

As the semantics for interpretability logic, the extensions of Kripke semantics (i.e. relational semantics) has been proposed by de Jongh and Veltman. nowaday this semantics called Veltman semantics.

Let K := \langle W, R \rangle be Kripke frame which validate modal logic \mathbf{GL}, a Veltman frame V is obtained by adding a family of relations \{S_w\}_{w \in W}, indexed by each world to K. S_w must satisfy only the following property: x S_w y \implies w R y. As we write \prec and (in lean) for R in Kripke semantics, we sometimes write \prec_w and ≺[w] (in lean) for S_w.

🔗structure
LO.InterpretabilityLogic.Veltman.Frame : Type 1
LO.InterpretabilityLogic.Veltman.Frame : Type 1

Note:

To be precise, we call Veltman frame when S has reflexive, transitive and satisfies S_IL conditions, i.e. satisfies IsIL. Frames that impose none of these conditions are called Veltman prestructures or ILMinus frames. However, since making such distinctions is cumbersome in formalizing, we will refer to frames where only S is defined as Veltman frames in this project.

Constructor

LO.InterpretabilityLogic.Veltman.Frame.mk

Extends

Fields

World : Type
Inherited from
  1. Modal.Kripke.Frame
Rel : HRel self.World
Inherited from
  1. Modal.Kripke.Frame
world_nonempty : Nonempty self.World
Inherited from
  1. Modal.Kripke.Frame
isGL : self.IsGL
S : self.World  HRel self.World
S_cond :  {w x y : self.World}, self.S w x y  w  x

Remark: As a terminological remark, a frame with \{S_w\}_{w \in W} but without further structural conditions is usually not called a Veltman frame. In the literature, such vanilla structures are referred to as Veltman prestructures (Visser (1988)Albert. Visser, 1988. “Preliminary Notes on Interpretability Logic”. arXiv:none) or \mathbf{IL^-}-frames (Kurahashi and Okawa (2021)Taishi. Kurahashi and Yuya. Okawa (May 2021). “Modal completeness of sublogics of the interpretability logic IL”. Mathematical Logic Quarterly.67 2.). However, to avoid unnecessary naming complexity, in our formalization we simply refer to them as Veltman frames.

The notion of a valuation and a model is defined in the same way as in modal logic, except that the underlying frame is now a Veltman frame.

The satisfaction relation except \rhd is defined same as modal logic. For \rhd is defined as follows: Let M be a Veltman model and w be a world in M.

M, w \models \varphi \rhd \psi \iff ∀ x, w \prec x ~\&~ M, x \models \varphi, \exists y, x \prec_w y ~\&~ M, y \models \psi

With this semantics in place, validity on models and frames is defined analogously to Kripke semantics.

For any Veltman frames, axioms \mathsf{J3}, \mathsf{J6} are valid and rule \mathrm{(R1)} and \mathrm{(R2)} are conserve the validity.

🔗theorem
LO.InterpretabilityLogic.Veltman.validate_axiomJ3 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } : F InterpretabilityLogic.Axioms.J3 φ ψ χ
LO.InterpretabilityLogic.Veltman.validate_axiomJ3 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } : F InterpretabilityLogic.Axioms.J3 φ ψ χ
🔗theorem
LO.InterpretabilityLogic.Veltman.validate_axiomJ6 {F : InterpretabilityLogic.Veltman.Frame} {φ : InterpretabilityLogic.Formula } : F InterpretabilityLogic.Axioms.J6 φ
LO.InterpretabilityLogic.Veltman.validate_axiomJ6 {F : InterpretabilityLogic.Veltman.Frame} {φ : InterpretabilityLogic.Formula } : F InterpretabilityLogic.Axioms.J6 φ
🔗theorem
LO.InterpretabilityLogic.Veltman.validate_R1 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } (h : F φ ψ) : F χ φ χ ψ
LO.InterpretabilityLogic.Veltman.validate_R1 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } (h : F φ ψ) : F χ φ χ ψ
🔗theorem
LO.InterpretabilityLogic.Veltman.validate_R2 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } (h : F φ ψ) : F ψ χ φ χ
LO.InterpretabilityLogic.Veltman.validate_R2 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } (h : F φ ψ) : F ψ χ φ χ

Hence, the logic \mathbf{IL^-} is sound with respect to the class of all Veltman frames.

🔗theorem
LO.InterpretabilityLogic.ILMinus.Veltman.sound : Sound InterpretabilityLogic.ILMinus InterpretabilityLogic.Veltman.FrameClass.ILMinus
LO.InterpretabilityLogic.ILMinus.Veltman.sound : Sound InterpretabilityLogic.ILMinus InterpretabilityLogic.Veltman.FrameClass.ILMinus

Furthermore, additional frame conditions are required to validate more axioms \mathsf{J1}, \mathsf{J2} (\mathsf{J2^+}), \mathsf{J4} (\mathsf{J4^+}) and \mathsf{J5}.

🔗type class
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ1 (F : InterpretabilityLogic.Veltman.Frame) : Prop
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ1 (F : InterpretabilityLogic.Veltman.Frame) : Prop

Instance Constructor

LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ1.mk

Methods

S_J1 :  {w x : F.World}, w  x  x ≺[w] x
🔗theorem
LO.InterpretabilityLogic.Veltman.validate_axiomJ1_of_J1 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ : InterpretabilityLogic.Formula } [F.HasAxiomJ1] : F InterpretabilityLogic.Axioms.J1 φ ψ
LO.InterpretabilityLogic.Veltman.validate_axiomJ1_of_J1 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ : InterpretabilityLogic.Formula } [F.HasAxiomJ1] : F InterpretabilityLogic.Axioms.J1 φ ψ
🔗type class
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ2 (F : InterpretabilityLogic.Veltman.Frame) : Prop
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ2 (F : InterpretabilityLogic.Veltman.Frame) : Prop

Instance Constructor

LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ2.mk

Extends

Methods

S_J4 :  {w x y : F.World}, x ≺[w] y  w  y
Inherited from
  1. F.HasAxiomJ4
S_J2 :  {w x y z : F.World}, x ≺[w] y  y ≺[w] z  x ≺[w] z
🔗theorem
LO.InterpretabilityLogic.Veltman.validate_axiomJ2Plus_of_HasAxiomJ2 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } [F.HasAxiomJ2] : F InterpretabilityLogic.Axioms.J2Plus φ ψ χ
LO.InterpretabilityLogic.Veltman.validate_axiomJ2Plus_of_HasAxiomJ2 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } [F.HasAxiomJ2] : F InterpretabilityLogic.Axioms.J2Plus φ ψ χ
🔗type class
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ4 (F : InterpretabilityLogic.Veltman.Frame) : Prop
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ4 (F : InterpretabilityLogic.Veltman.Frame) : Prop

Instance Constructor

LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ4.mk

Methods

S_J4 :  {w x y : F.World}, x ≺[w] y  w  y
🔗theorem
LO.InterpretabilityLogic.Veltman.validate_axiomJ4Plus_of_HasAxiomJ4 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } [F.HasAxiomJ4] : F InterpretabilityLogic.Axioms.J4Plus φ ψ χ
LO.InterpretabilityLogic.Veltman.validate_axiomJ4Plus_of_HasAxiomJ4 {F : InterpretabilityLogic.Veltman.Frame} {φ ψ χ : InterpretabilityLogic.Formula } [F.HasAxiomJ4] : F InterpretabilityLogic.Axioms.J4Plus φ ψ χ
🔗type class
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ5 (F : InterpretabilityLogic.Veltman.Frame) : Prop
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ5 (F : InterpretabilityLogic.Veltman.Frame) : Prop

Instance Constructor

LO.InterpretabilityLogic.Veltman.Frame.HasAxiomJ5.mk

Methods

S_J5 :  {w x y : F.World}, w  x  x  y  x ≺[w] y
🔗theorem
LO.InterpretabilityLogic.Veltman.validate_axiomJ5_of_J5 {F : InterpretabilityLogic.Veltman.Frame} {φ : InterpretabilityLogic.Formula } [F.HasAxiomJ5] : F InterpretabilityLogic.Axioms.J5 φ
LO.InterpretabilityLogic.Veltman.validate_axiomJ5_of_J5 {F : InterpretabilityLogic.Veltman.Frame} {φ : InterpretabilityLogic.Formula } [F.HasAxiomJ5] : F InterpretabilityLogic.Axioms.J5 φ

Hence, in particular, the logics \mathbf{CL} and \mathbf{IL} are sound with respect to appropriate classes of Veltman frames.

🔗theorem
LO.InterpretabilityLogic.CL.Veltman.sound : Sound InterpretabilityLogic.CL InterpretabilityLogic.Veltman.FrameClass.CL
LO.InterpretabilityLogic.CL.Veltman.sound : Sound InterpretabilityLogic.CL InterpretabilityLogic.Veltman.FrameClass.CL
🔗theorem
LO.InterpretabilityLogic.IL.Veltman.sound : Sound InterpretabilityLogic.IL InterpretabilityLogic.Veltman.FrameClass.IL
LO.InterpretabilityLogic.IL.Veltman.sound : Sound InterpretabilityLogic.IL InterpretabilityLogic.Veltman.FrameClass.IL

Other axioms of frame correspondences are currently under working and will be reported in the next month update.

We list several goals for future development:

  • Currently we did not formalize completeness results. Completeness for \mathbf{IL} and some of its extensions was shown by de Jongh and Veltman (1990)Dick. de Jongh and Frank. Veltman, 1990. “Provability Logics for Relative Interpretability”. arXiv:none and completeness for sublogics of \mathbf{IL} has been established by Kurahashi and Okawa (2021)Taishi. Kurahashi and Yuya. Okawa (May 2021). “Modal completeness of sublogics of the interpretability logic IL”. Mathematical Logic Quarterly.67 2.. Technically, the latter appears more approachable, and we intend to proceed from there.

  • Under arithmetical interpretations, the unary modality \Box has little flexibility, i.e. being interpreted as a provability predicate. In contrast, the binary modality \rhd admits various interpretations, e.g. conservatibility, interpretability. And it would be desirable to formalize arithmetical soundness and completeness results that reflect these interpretations.

  • Although Veltman semantics is basic, it is known that a technically simpler semantics is useful when considering embedding to arithmetic. This simplified semantics is called simplified Veltman semantics or Visser semantics. See Visser (1988)Albert. Visser, 1988. “Preliminary Notes on Interpretability Logic”. arXiv:none. By contrast, enriching the relation S_w is more useful to distinguish more fine frame correspondences to axioms. This generalized semantics is called generalized Veltman semantics or Verbrugge semantics. See Joostenet al (2024)Joost J. Joosten, Jan Mas. Rovira, Luka. Mikec, and Mladen. Vuković, 2024. “An Overview of Verbrugge Semantics, a.k.a. Generalised Veltman Semantics”. In Dick de Jongh on Intuitionistic and Provability Logics. the overview of Verbrugge semantics. These two semantics exhibit a trade-off between technical flexibility and frame correspondences. We plan to formalize both, for arithmetical completeness and separation of logics. To note that for Verbrugge semantics, prior formalizations exist in Agda (and Coq) in Rovira (2020)Jan Mas. Rovira, 2020. Interpretability Logics and Generalized Veltman Semantics in Agda. Master thesis, The University of Amsterdam. This formalization is particularly concerning axiom characterization and soundness, which we also intend to extend.

Commits

  • 3a9f118c: add(FirstOrder): ZFC is consistent (#606)

  • fee7c6e4: add(FirstOrder): forcing part.1 (#604)

  • fc53bbd3: add(InterpretabilityLogic): Veltman semantics and soundness (#602)

  • 263961ed: refactor(FirstOrder): structure (#603)

  • b41e28ef: refactor(FirstOrder): refactor arithmetic (#573)

  • d97591fe: add(FirstOrder): downward Löwenheim-Skolem theorem (#599)

  • a5548d9a: rename(FirstOrder): InterpretationDirectInterpretation (#598)

  • 7285d2a1: add(FirstOrder/SetTheory): cardinals in set theory, part 1 (#579)

  • 325cc7c4: refactor(Logic): rename & refactor (#597)

  • 7c23fc78: add(Modal): EMC equals to EMCK (#596)

  • 87bb48ca: add(Modal/Neighborhood): Soundness of EK and EMK (#595)

  • 05e54f4f: add(IntFO): Heyting valued model (#593)

  • 9096b38a: feat(IntFO): redefine Kripke model of intuitionistic first-order logic (#591)

  • 9f6fbe29: add(Modal): Add EMK and syntactical analysis (#590)

  • 8eae9b15: refactor(Neighborhood): Canonicity (#589)

  • 3a9556d5: add(Modal/Algebra): Definitions of Magari algebra (#195)

  • 8c9d11bf: docs(Book): Neighborhood filtration (#585)

  • 1840b19b: docs: Fix fonts (#588)

  • 580bb22e: add(Book): on G1 and G2 (#586)

  • 1807efa0: chore: Update to v4.24.0-rc1 (#582)

  • 3c96ded4: rename: goedel/Goedelgödel/ Gödel (#583)

  • 4615adcf: add(Modal/Neighborhood): FFP of EN4, ENT4, EMNT4, EMCN4 (#584)

  • 8ac14dcb: docs: Book by Verso (#399)

  • 835896e4: ci: Fix CI trigger (#581)

  • 201c5092: add(Modal/Neighborhood): Add some observations (#577)

  • dfe9cc43: add(FirstOrder/SetTheory): functions in 𝗭 (#578)

  • f1acb057: add(FirstOrder): ordinals in Zermelo set theoey (#575)

  • 201dd59f: refactor(Modal/Neighborhood): Refactor (#576)

Call for Support

We have created an Open Collective account. (GitHub Sponsors is now pending.)

Currently, this project receives little to no financial support. If you find our work valuable, we would greatly appreciate contributions to help sustain our OSS development efforts. All supports received will be shared between the two current maintainers.