Axiom of empty set.
3.1. Axioms and Schemata of Set Theory
We define basic 7 axioms and 2 axiom schemata.
Axiom of extentionality.
Axiom of pairing.
Axiom of union.
Axiom of power set.
Axiom of infinity.
Axiom of foundation.
Axiom schema of separation (Aussonderungsaxiom).
Axiom schema of replacement.
The theory obtained by excluding replacement schema from the above axioms and axiom schemata
is called Zermelo set theory 𝗭.
Zermelo set theory.
Constructors
axiom_of_empty_set : 𝗭 Axiom.empty
Axiom of empty set.
axiom_of_extentionality : 𝗭 Axiom.extentionality
Axiom of extentionality.
axiom_of_pairing : 𝗭 Axiom.pairing
Axiom of pairing.
axiom_of_union : 𝗭 Axiom.union
Axiom of empty union.
axiom_of_power_set : 𝗭 Axiom.power
Axiom of power set.
axiom_of_infinity : 𝗭 Axiom.infinity
Axiom of infinity.
axiom_of_foundation : 𝗭 Axiom.foundation
Axiom of foundation.
axiom_of_separation (φ : SyntacticSemiformula ℒₛₑₜ 1) : 𝗭 (Axiom.separationSchema φ)
Axiom schema of separation.
The theory of all the above axioms and axiom schemata
is called Zermelo-Fraelkel set theory 𝗭𝗙.
Zermelo-Fraenkel set theory.
Constructors
axiom_of_empty_set : 𝗭𝗙 Axiom.empty
Axiom of empty set.
axiom_of_extentionality : 𝗭𝗙 Axiom.extentionality
Axiom of extentionality.
axiom_of_pairing : 𝗭𝗙 Axiom.pairing
Axiom of pairing.
axiom_of_union : 𝗭𝗙 Axiom.union
Axiom of union.
axiom_of_power_set : 𝗭𝗙 Axiom.power
Axiom of power set.
axiom_of_infinity : 𝗭𝗙 Axiom.infinity
Axiom of infinity.
axiom_of_foundation : 𝗭𝗙 Axiom.foundation
Axiom of foundation.
axiom_of_separation (φ : SyntacticSemiformula ℒₛₑₜ 1) : 𝗭𝗙 (Axiom.separationSchema φ)
Axiom schema of separation.
axiom_of_replacement (φ : SyntacticSemiformula ℒₛₑₜ 2) : 𝗭𝗙 (Axiom.replacementSchema φ)
Axiom schema of replacement.