Documentation

Lean.Data.HashMap

def Lean.HashMapBucket (α : Type u) (β : Type v) :
Type (max 0 u v)
Equations
def Lean.HashMapBucket.update {α : Type u} {β : Type v} (data : Lean.HashMapBucket α β) (i : USize) (d : Lean.AssocList α β) (h : i.toNat < data.val.size) :
Equations
  • data.update i d h = data.val.uset i d h,
@[simp]
theorem Lean.HashMapBucket.size_update {α : Type u} {β : Type v} (data : Lean.HashMapBucket α β) (i : USize) (d : Lean.AssocList α β) (h : i.toNat < data.val.size) :
(data.update i d h).val.size = data.val.size
structure Lean.HashMapImp (α : Type u) (β : Type v) :
Type (max u v)
def Lean.mkHashMapImp {α : Type u} {β : Type v} (capacity : optParam Nat 8) :
Equations
@[inline]
def Lean.HashMapImp.reinsertAux {α : Type u} {β : Type v} (hashFn : αUInt64) (data : Lean.HashMapBucket α β) (a : α) (b : β) :
Equations
@[inline]
def Lean.HashMapImp.foldBucketsM {α : Type u} {β : Type v} {δ : Type w} {m : Type w → Type w} [Monad m] (data : Lean.HashMapBucket α β) (d : δ) (f : δαβm δ) :
m δ
Equations
@[inline]
def Lean.HashMapImp.foldBuckets {α : Type u} {β : Type v} {δ : Type w} (data : Lean.HashMapBucket α β) (d : δ) (f : δαβδ) :
δ
Equations
@[inline]
def Lean.HashMapImp.foldM {α : Type u} {β : Type v} {δ : Type w} {m : Type w → Type w} [Monad m] (f : δαβm δ) (d : δ) (h : Lean.HashMapImp α β) :
m δ
Equations
@[inline]
def Lean.HashMapImp.fold {α : Type u} {β : Type v} {δ : Type w} (f : δαβδ) (d : δ) (m : Lean.HashMapImp α β) :
δ
Equations
@[inline]
def Lean.HashMapImp.forBucketsM {α : Type u} {β : Type v} {m : Type w → Type w} [Monad m] (data : Lean.HashMapBucket α β) (f : αβm PUnit) :
Equations
@[inline]
def Lean.HashMapImp.forM {α : Type u} {β : Type v} {m : Type w → Type w} [Monad m] (f : αβm PUnit) (h : Lean.HashMapImp α β) :
Equations
def Lean.HashMapImp.findEntry? {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : Lean.HashMapImp α β) (a : α) :
Option (α × β)
Equations
def Lean.HashMapImp.find? {α : Type u} {β : Type v} [beq : BEq α] [Hashable α] (m : Lean.HashMapImp α β) (a : α) :
Equations
def Lean.HashMapImp.contains {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : Lean.HashMapImp α β) (a : α) :
Equations
@[irreducible]
def Lean.HashMapImp.moveEntries {α : Type u} {β : Type v} [Hashable α] (i : Nat) (source : Array (Lean.AssocList α β)) (target : Lean.HashMapBucket α β) :
Equations
  • One or more equations did not get rendered due to their size.
def Lean.HashMapImp.expand {α : Type u} {β : Type v} [Hashable α] (size : Nat) (buckets : Lean.HashMapBucket α β) :
Equations
@[inline]
def Lean.HashMapImp.insert {α : Type u} {β : Type v} [beq : BEq α] [Hashable α] (m : Lean.HashMapImp α β) (a : α) (b : β) :
Equations
  • One or more equations did not get rendered due to their size.
@[inline]
def Lean.HashMapImp.insertIfNew {α : Type u} {β : Type v} [beq : BEq α] [Hashable α] (m : Lean.HashMapImp α β) (a : α) (b : β) :
Equations
  • One or more equations did not get rendered due to their size.
def Lean.HashMapImp.erase {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : Lean.HashMapImp α β) (a : α) :
Equations
  • One or more equations did not get rendered due to their size.
inductive Lean.HashMapImp.WellFormed {α : Type u} {β : Type v} [BEq α] [Hashable α] :
def Lean.mkHashMap {α : Type u} {β : Type v} [BEq α] [Hashable α] (capacity : optParam Nat 8) :
Equations
instance Lean.HashMap.instInhabited {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] :
Equations
  • Lean.HashMap.instInhabited = { default := Lean.mkHashMap }
instance Lean.HashMap.instEmptyCollection {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] :
Equations
  • Lean.HashMap.instEmptyCollection = { emptyCollection := Lean.mkHashMap }
@[inline]
def Lean.HashMap.empty {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] :
Equations
  • Lean.HashMap.empty = Lean.mkHashMap
def Lean.HashMap.insert {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαβLean.HashMap α β
Equations
  • m.insert a b = match m with | m, hw => match h : m.insert a b with | (m', snd) => m',
def Lean.HashMap.insert' {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαβLean.HashMap α β × Bool

Similar to insert, but also returns a Boolean flag indicating whether an existing entry has been replaced with a -> b.

Equations
  • m.insert' a b = match m with | m, hw => match h : m.insert a b with | (m', replaced) => (m', , replaced)
def Lean.HashMap.insertIfNew {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαβLean.HashMap α β × Option β

Similar to insert, but returns some old if the map already had an entry α → old. If the result is some old, the the resulting map is equal to m.

Equations
  • m.insertIfNew a b = match m with | m, hw => match h : m.insertIfNew a b with | (m', old) => (m', , old)
@[inline]
def Lean.HashMap.erase {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαLean.HashMap α β
Equations
  • m.erase a = match m with | m, hw => m.erase a,
@[inline]
def Lean.HashMap.findEntry? {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαOption (α × β)
Equations
  • m.findEntry? a = match m with | m, property => m.findEntry? a
@[inline]
def Lean.HashMap.find? {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαOption β
Equations
  • m.find? a = match m with | m, property => m.find? a
@[inline]
def Lean.HashMap.findD {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαββ
Equations
  • m.findD a b₀ = (m.find? a).getD b₀
@[inline]
def Lean.HashMap.find! {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → [inst : Inhabited β] → Lean.HashMap α βαβ
Equations
  • m.find! a = match m.find? a with | some b => b | none => panicWithPosWithDecl "Lean.Data.HashMap" "Lean.HashMap.find!" 221 14 "key is not in the map"
instance Lean.HashMap.instGetElemOptionTrue {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → GetElem (Lean.HashMap α β) α (Option β) fun (x : Lean.HashMap α β) (x : α) => True
Equations
  • Lean.HashMap.instGetElemOptionTrue = { getElem := fun (m : Lean.HashMap α β) (k : α) (x_1 : True) => m.find? k }
@[inline]
def Lean.HashMap.contains {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βαBool
Equations
  • m.contains a = match m with | m, property => m.contains a
@[inline]
def Lean.HashMap.foldM {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → {δ : Type w} → {m : Type w → Type w} → [inst : Monad m] → (δαβm δ)δLean.HashMap α βm δ
Equations
@[inline]
def Lean.HashMap.fold {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → {δ : Type w} → (δαβδ)δLean.HashMap α βδ
Equations
@[inline]
def Lean.HashMap.forM {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → {m : Type w → Type w} → [inst : Monad m] → (αβm PUnit)Lean.HashMap α βm PUnit
Equations
@[inline]
def Lean.HashMap.size {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βNat
Equations
  • m.size = match m with | { size := sz, buckets := buckets }, property => sz
@[inline]
def Lean.HashMap.isEmpty {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βBool
Equations
def Lean.HashMap.toList {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βList (α × β)
Equations
def Lean.HashMap.toArray {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βArray (α × β)
Equations
def Lean.HashMap.numBuckets {α : Type u} {β : Type v} :
{x : BEq α} → {x_1 : Hashable α} → Lean.HashMap α βNat
Equations
  • m.numBuckets = m.val.buckets.val.size
def Lean.HashMap.ofList {α : Type u} {β : Type v} [BEq α] [Hashable α] (l : List (α × β)) :

Builds a HashMap from a list of key-value pairs. Values of duplicated keys are replaced by their respective last occurrences.

Equations
def Lean.HashMap.ofListWith {α : Type u} {β : Type v} [BEq α] [Hashable α] (l : List (α × β)) (f : βββ) :

Variant of ofList which accepts a function that combines values of duplicated keys.

Equations
  • One or more equations did not get rendered due to their size.
def Array.groupByKey {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] (key : βα) (xs : Array β) :

Groups all elements x, y in xs with key x == key y into the same array (xs.groupByKey key).find! (key x). Groups preserve the relative order of elements in xs.

Equations
  • One or more equations did not get rendered due to their size.