Documentation

Logic.FirstOrder.Arith.Basic

instance LO.instORingStrucOfZeroOfOneOfAddOfMulOfLT {α : Type u_1} [Zero α] [One α] [Add α] [Mul α] [LT α] :
Equations
  • LO.instORingStrucOfZeroOfOneOfAddOfMulOfLT = LO.ORingStruc.mk
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.FirstOrder.Language.oringEmb_zero {L : LO.FirstOrder.Language} [L.ORing] :
LO.FirstOrder.Language.oringEmb.func LO.FirstOrder.Language.Zero.zero = LO.FirstOrder.Language.Zero.zero
@[simp]
theorem LO.FirstOrder.Language.oringEmb_one {L : LO.FirstOrder.Language} [L.ORing] :
LO.FirstOrder.Language.oringEmb.func LO.FirstOrder.Language.One.one = LO.FirstOrder.Language.One.one
@[simp]
theorem LO.FirstOrder.Language.oringEmb_add {L : LO.FirstOrder.Language} [L.ORing] :
LO.FirstOrder.Language.oringEmb.func LO.FirstOrder.Language.Add.add = LO.FirstOrder.Language.Add.add
@[simp]
theorem LO.FirstOrder.Language.oringEmb_mul {L : LO.FirstOrder.Language} [L.ORing] :
LO.FirstOrder.Language.oringEmb.func LO.FirstOrder.Language.Mul.mul = LO.FirstOrder.Language.Mul.mul
@[simp]
theorem LO.FirstOrder.Language.oringEmb_eq {L : LO.FirstOrder.Language} [L.ORing] :
LO.FirstOrder.Language.oringEmb.rel op(=) = op(=)
@[simp]
theorem LO.FirstOrder.Language.oringEmb_lt {L : LO.FirstOrder.Language} [L.ORing] :
LO.FirstOrder.Language.oringEmb.rel op(<) = op(<)
Equations
@[simp]
theorem LO.FirstOrder.Semiterm.oringEmb_add {L : LO.FirstOrder.Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2LO.FirstOrder.Semiterm ℒₒᵣ ξ n) :
LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (op(+).operator v) = (‘(!!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 0)) + !!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 1)))’)
@[simp]
theorem LO.FirstOrder.Semiterm.oringEmb_mul {L : LO.FirstOrder.Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2LO.FirstOrder.Semiterm ℒₒᵣ ξ n) :
LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (op(*).operator v) = ‘(!!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 0)) * !!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 1)))’
Equations
Equations
@[simp]
theorem LO.FirstOrder.Semiformula.oringEmb_eq {L : LO.FirstOrder.Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2LO.FirstOrder.Semiterm ℒₒᵣ ξ n) :
(LO.FirstOrder.Semiformula.lMap LO.FirstOrder.Language.oringEmb) (op(=).operator v) = (“!!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 0)) = !!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 1)))
@[simp]
theorem LO.FirstOrder.Semiformula.oringEmb_lt {L : LO.FirstOrder.Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2LO.FirstOrder.Semiterm ℒₒᵣ ξ n) :
(LO.FirstOrder.Semiformula.lMap LO.FirstOrder.Language.oringEmb) (op(<).operator v) = (“!!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 0)) < !!(LO.FirstOrder.Semiterm.lMap LO.FirstOrder.Language.oringEmb (v 1)))
theorem LO.FirstOrder.Semiformula.eval_bexLTSucc {n : } {L : LO.FirstOrder.Language} [L.LT] [L.Zero] [L.One] [L.Add] {ξ : Type u_1} {M : Type u_2} {s : LO.FirstOrder.Structure L M} [LT M] [One M] [Add M] [LO.FirstOrder.Structure.LT L M] [LO.FirstOrder.Structure.One L M] [LO.FirstOrder.Structure.Add L M] {t : LO.FirstOrder.Semiterm L ξ n} {p : LO.FirstOrder.Semiformula L ξ (n + 1)} {e : Fin nM} {ε : ξM} :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.FirstOrder.Arith.consequence_of {L : LO.FirstOrder.Language} [L.ORing] (T : LO.FirstOrder.Theory L) [𝐄𝐐 T] (p : LO.FirstOrder.SyntacticFormula L) (H : ∀ (M : Type (max u w)) [inst : LO.ORingStruc M] [inst_1 : LO.FirstOrder.Structure L M] [inst_2 : LO.FirstOrder.Structure.ORing L M] [inst_3 : M ⊧ₘ* T], M ⊧ₘ p) :
T p
Equations
  • LO.FirstOrder.Arith.instGoedelNumberORingOfEncodable = LO.FirstOrder.Semiterm.Operator.GoedelNumber.ofEncodable
Equations