Documentation

Logic.FirstOrder.Basic.Coding

def LO.FirstOrder.Semiterm.toNat {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] {n : } :
Equations
@[irreducible]
def LO.FirstOrder.Semiterm.ofNat {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] (n : ) :
Equations
instance LO.FirstOrder.Semiterm.encodable {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] {n : } :
Equations
def LO.FirstOrder.Semiformula.toNat {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {ξ : Type u_1} [Encodable ξ] {n : } :
Equations
@[irreducible]
def LO.FirstOrder.Semiformula.ofNat {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {ξ : Type u_1} [Encodable ξ] (n : ) :
Equations
theorem LO.FirstOrder.Semiformula.ofNat_toNat {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {ξ : Type u_1} [Encodable ξ] {n : } (p : LO.FirstOrder.Semiformula L ξ n) :
instance LO.FirstOrder.Semiformula.encodable {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {ξ : Type u_1} [Encodable ξ] {n : } :
Equations