Documentation

Logic.FirstOrder.Completeness.SearchTree

theorem LO.FirstOrder.Completeness.ReduxNat.antimonotone {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {T : LO.FirstOrder.Theory L} {s : } {Δ₂ : LO.FirstOrder.Sequent L} {Δ₁ : LO.FirstOrder.Sequent L} (h : LO.FirstOrder.Completeness.ReduxNat T s Δ₂ Δ₁) :
Δ₁ Δ₂
@[reducible, inline]
Equations
  • τ.rank = τ.fst
@[reducible, inline]
Equations
  • τ.seq = τ.snd.fst
Equations
  • LO.FirstOrder.Completeness.SearchTree.instTop = { top := 0, Γ, LO.FirstOrder.Completeness.SearchTreeAux.zero }
@[simp]
theorem LO.FirstOrder.Completeness.SearchTree.rank_top {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} :
.rank = 0
@[simp]
theorem LO.FirstOrder.Completeness.SearchTree.seq_top {L : LO.FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} :
.seq = Γ
noncomputable def LO.FirstOrder.Completeness.syntacticMainLemma {L : LO.FirstOrder.Language} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {T : LO.FirstOrder.Theory L} {Γ : LO.FirstOrder.Sequent L} (wf : WellFounded (LO.FirstOrder.Completeness.SearchTree.Lt T Γ)) (p : LO.FirstOrder.Completeness.SearchTree T Γ) :
T p.seq
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.FirstOrder.Completeness.instInhabitedModel = { default := default }
Equations
  • One or more equations did not get rendered due to their size.