@[reducible, inline]
abbrev
LO.Axioms.DiaDuality
{F : Type u_1}
[LO.LogicalConnective F]
[LO.Box F]
(p : F)
[LO.Dia F]
:
F
◇
is duality of □
.
@[reducible, inline]
abbrev
LO.Axioms.DiaDuality.set
{F : Type u_1}
[LO.LogicalConnective F]
[LO.Box F]
[LO.Dia F]
:
Set F
Equations
- LO.Axioms.DiaDuality.set = {x : F | ∃ (p : F), LO.Axioms.DiaDuality p = x}
@[reducible, inline]
@[reducible, inline]
Equations
- 𝗞 = {x : F | ∃ (p : F) (q : F), LO.Axioms.K p q = x}
Equations
- LO.Axioms.«term𝗞» = Lean.ParserDescr.node `LO.Axioms.term𝗞 1024 (Lean.ParserDescr.symbol "𝗞")
@[reducible, inline]
Equations
- LO.Axioms.T p = □p ➝ p
Equations
- LO.Axioms.«term𝗧» = Lean.ParserDescr.node `LO.Axioms.term𝗧 1024 (Lean.ParserDescr.symbol "𝗧")
@[reducible, inline]
Equations
- LO.Axioms.B p = p ➝ □◇p
Equations
- LO.Axioms.«term𝗕» = Lean.ParserDescr.node `LO.Axioms.term𝗕 1024 (Lean.ParserDescr.symbol "𝗕")
@[reducible, inline]
□
-only version of axiom 𝗕
.
@[reducible, inline]
Equations
- 𝗕(□) = {x : F | ∃ (p : F), LO.Axioms.B₂ p = x}
Equations
- LO.Axioms.«term𝗕(□)» = Lean.ParserDescr.node `LO.Axioms.term𝗕(□) 1024 (Lean.ParserDescr.symbol "𝗕(□)")
@[reducible, inline]
Equations
- LO.Axioms.D p = □p ➝ ◇p
Equations
- LO.Axioms.«term𝗗» = Lean.ParserDescr.node `LO.Axioms.term𝗗 1024 (Lean.ParserDescr.symbol "𝗗")
@[reducible, inline]
Alternative form of axiom 𝗗
. In sight of provability logic, this can be seen as consistency of theory.
@[reducible, inline]
Equations
- LO.Axioms.«term𝗗(⊥)» = Lean.ParserDescr.node `LO.Axioms.term𝗗(⊥) 1024 (Lean.ParserDescr.symbol "𝗗(⊥)")
@[simp]
@[reducible, inline]
Equations
- LO.Axioms.«term𝟰» = Lean.ParserDescr.node `LO.Axioms.term𝟰 1024 (Lean.ParserDescr.symbol "𝟰")
@[reducible, inline]
Equations
- LO.Axioms.«term𝟱» = Lean.ParserDescr.node `LO.Axioms.term𝟱 1024 (Lean.ParserDescr.symbol "𝟱")
@[reducible, inline]
□
-only version of axiom 𝟱
.
@[reducible, inline]
Equations
- 𝟱(□) = {x : F | ∃ (p : F), LO.Axioms.Five₂ p = x}
Equations
- LO.Axioms.«term𝟱(□)» = Lean.ParserDescr.node `LO.Axioms.term𝟱(□) 1024 (Lean.ParserDescr.symbol "𝟱(□)")
@[reducible, inline]
Equations
- LO.Axioms.«term.𝟮» = Lean.ParserDescr.node `LO.Axioms.term.𝟮 1024 (Lean.ParserDescr.symbol ".𝟮")
@[reducible, inline]
Equations
- LO.Axioms.«term𝗖𝟰» = Lean.ParserDescr.node `LO.Axioms.term𝗖𝟰 1024 (Lean.ParserDescr.symbol "𝗖𝟰")
@[reducible, inline]
Equations
- LO.Axioms.CD p = ◇p ➝ □p
Equations
- LO.Axioms.«term𝗖𝗗» = Lean.ParserDescr.node `LO.Axioms.term𝗖𝗗 1024 (Lean.ParserDescr.symbol "𝗖𝗗")
@[reducible, inline]
Equations
- LO.Axioms.Tc p = p ➝ □p
Equations
- LO.Axioms.«term𝗧𝗰» = Lean.ParserDescr.node `LO.Axioms.term𝗧𝗰 1024 (Lean.ParserDescr.symbol "𝗧𝗰")
@[reducible, inline]
Equations
- LO.Axioms.Ver p = □p
@[reducible, inline]
Equations
- 𝗩𝗲𝗿 = {x : F | ∃ (p : F), LO.Axioms.Ver p = x}
Equations
- LO.Axioms.«term𝗩𝗲𝗿» = Lean.ParserDescr.node `LO.Axioms.term𝗩𝗲𝗿 1024 (Lean.ParserDescr.symbol "𝗩𝗲𝗿")
@[reducible, inline]
@[reducible, inline]
Equations
- .𝟯 = {x : F | ∃ (p : F) (q : F), LO.Axioms.Dot3 p q = x}
Equations
- LO.Axioms.«term.𝟯» = Lean.ParserDescr.node `LO.Axioms.term.𝟯 1024 (Lean.ParserDescr.symbol ".𝟯")
@[reducible, inline]
@[reducible, inline]
Equations
- 𝗚𝗿𝘇 = {x : F | ∃ (p : F), LO.Axioms.Grz p = x}
Equations
- LO.Axioms.«term𝗚𝗿𝘇» = Lean.ParserDescr.node `LO.Axioms.term𝗚𝗿𝘇 1024 (Lean.ParserDescr.symbol "𝗚𝗿𝘇")
@[reducible, inline]
@[reducible, inline]
Equations
- 𝗠 = {x : F | ∃ (p : F), LO.Axioms.M p = x}
Equations
- LO.Axioms.«term𝗠» = Lean.ParserDescr.node `LO.Axioms.term𝗠 1024 (Lean.ParserDescr.symbol "𝗠")
@[reducible, inline]
@[reducible, inline]
Equations
- 𝗟 = {x : F | ∃ (p : F), LO.Axioms.L p = x}
Equations
- LO.Axioms.«term𝗟» = Lean.ParserDescr.node `LO.Axioms.term𝗟 1024 (Lean.ParserDescr.symbol "𝗟")
@[reducible, inline]
@[reducible, inline]
Equations
- 𝗛 = {x : F | ∃ (p : F), LO.Axioms.H p = x}
Equations
- LO.Axioms.«term𝗛» = Lean.ParserDescr.node `LO.Axioms.term𝗛 1024 (Lean.ParserDescr.symbol "𝗛")