Documentation

Logic.Modal.Axioms

@[reducible, inline]
abbrev LO.Axioms.DiaDuality {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) [LO.Dia F] :
F

is duality of .

Equations
@[reducible, inline]
Equations
@[reducible, inline]
abbrev LO.Axioms.K {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) (q : F) :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.K.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] :
Set F
Equations
@[reducible, inline]
abbrev LO.Axioms.T {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.T.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] :
Set F
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.B {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) [LO.Dia F] :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.B.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] [LO.Dia F] :
Set F
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.B₂ {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F

-only version of axiom 𝗕.

Equations
@[reducible, inline]
Equations
@[reducible, inline]
abbrev LO.Axioms.D {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) [LO.Dia F] :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.D.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] [LO.Dia F] :
Set F
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.D₂ {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] :
F

Alternative form of axiom 𝗗. In sight of provability logic, this can be seen as consistency of theory.

Equations
@[reducible, inline]
Equations
@[reducible, inline]
abbrev LO.Axioms.Four {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.Five {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) [LO.Dia F] :
F
Equations
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.Five₂ {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F

-only version of axiom 𝟱.

Equations
@[reducible, inline]
Equations
@[reducible, inline]
abbrev LO.Axioms.Dot2 {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) [LO.Dia F] :
F
Equations
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.C4 {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.CD {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) [LO.Dia F] :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.CD.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] [LO.Dia F] :
Set F
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.Tc {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
abbrev LO.Axioms.Ver {F : Type u_1} [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.Ver.set {F : Type u_1} [LO.Box F] :
Set F
Equations
@[reducible, inline]
abbrev LO.Axioms.Dot3 {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) (q : F) :
F
Equations
@[reducible, inline]
Equations
@[reducible, inline]
abbrev LO.Axioms.Grz {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
Equations
@[reducible, inline]
abbrev LO.Axioms.M {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) [LO.Dia F] :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.M.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] [LO.Dia F] :
Set F
Equations
@[reducible, inline]
abbrev LO.Axioms.L {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.L.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] :
Set F
Equations
@[reducible, inline]
abbrev LO.Axioms.H {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] (p : F) :
F
Equations
@[reducible, inline]
abbrev LO.Axioms.H.set {F : Type u_1} [LO.LogicalConnective F] [LO.Box F] :
Set F
Equations