Documentation

Mathlib.Algebra.Order.Field.Defs

Linear ordered (semi)fields #

A linear ordered (semi)field is a (semi)field equipped with a linear order such that

Main Definitions #

A linear ordered semifield is a field with a linear order respecting the operations.

  • add : ααα
  • add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
  • zero : α
  • zero_add : ∀ (a : α), 0 + a = a
  • add_zero : ∀ (a : α), a + 0 = a
  • nsmul : αα
  • nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
  • nsmul_succ : ∀ (n : ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
  • add_comm : ∀ (a b : α), a + b = b + a
  • mul : ααα
  • left_distrib : ∀ (a b c : α), a * (b + c) = a * b + a * c
  • right_distrib : ∀ (a b c : α), (a + b) * c = a * c + b * c
  • zero_mul : ∀ (a : α), 0 * a = 0
  • mul_zero : ∀ (a : α), a * 0 = 0
  • mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
  • one : α
  • one_mul : ∀ (a : α), 1 * a = a
  • mul_one : ∀ (a : α), a * 1 = a
  • natCast : α
  • natCast_zero : NatCast.natCast 0 = 0
  • natCast_succ : ∀ (n : ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
  • npow : αα
  • npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
  • npow_succ : ∀ (n : ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
  • le : ααProp
  • lt : ααProp
  • le_refl : ∀ (a : α), a a
  • le_trans : ∀ (a b c : α), a bb ca c
  • lt_iff_le_not_le : ∀ (a b : α), a < b a b ¬b a
  • le_antisymm : ∀ (a b : α), a bb aa = b
  • add_le_add_left : ∀ (a b : α), a b∀ (c : α), c + a c + b
  • le_of_add_le_add_left : ∀ (a b c : α), a + b a + cb c
  • exists_pair_ne : ∃ (x : α), ∃ (y : α), x y
  • zero_le_one : 0 1
  • mul_lt_mul_of_pos_left : ∀ (a b c : α), a < b0 < cc * a < c * b
  • mul_lt_mul_of_pos_right : ∀ (a b c : α), a < b0 < ca * c < b * c
  • mul_comm : ∀ (a b : α), a * b = b * a
  • min : ααα
  • max : ααα
  • compare : ααOrdering
  • le_total : ∀ (a b : α), a b b a
  • decidableLE : DecidableRel fun (x x_1 : α) => x x_1
  • decidableEq : DecidableEq α
  • decidableLT : DecidableRel fun (x x_1 : α) => x < x_1
  • min_def : ∀ (a b : α), min a b = if a b then a else b
  • max_def : ∀ (a b : α), max a b = if a b then b else a
  • compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
  • inv : αα
  • div : ααα
  • div_eq_mul_inv : ∀ (a b : α), a / b = a * b⁻¹

    a / b := a * b⁻¹

  • zpow : αα

    The power operation: a ^ n = a * ··· * a; a ^ (-n) = a⁻¹ * ··· a⁻¹ (n times)

  • zpow_zero' : ∀ (a : α), LinearOrderedSemifield.zpow 0 a = 1

    a ^ 0 = 1

  • zpow_succ' : ∀ (n : ) (a : α), LinearOrderedSemifield.zpow (Int.ofNat n.succ) a = LinearOrderedSemifield.zpow (Int.ofNat n) a * a

    a ^ (n + 1) = a ^ n * a

  • zpow_neg' : ∀ (n : ) (a : α), LinearOrderedSemifield.zpow (Int.negSucc n) a = (LinearOrderedSemifield.zpow (n.succ) a)⁻¹

    a ^ -(n + 1) = (a ^ (n + 1))⁻¹

  • inv_zero : 0⁻¹ = 0

    The inverse of 0 in a group with zero is 0.

  • mul_inv_cancel : ∀ (a : α), a 0a * a⁻¹ = 1

    Every nonzero element of a group with zero is invertible.

  • nnratCast : ℚ≥0α
  • nnratCast_def : ∀ (q : ℚ≥0), q = q.num / q.den

    However NNRat.cast is defined, it must be propositionally equal to a / b.

    Do not use this lemma directly. Use NNRat.cast_def instead.

  • nnqsmul : ℚ≥0αα

    Scalar multiplication by a nonnegative rational number.

    Unless there is a risk of a Module ℚ≥0 _ instance diamond, write nnqsmul := _. This will set nnqsmul to (NNRat.cast · * ·) thanks to unification in the default proof of nnqsmul_def.

    Do not use directly. Instead use the notation.

  • nnqsmul_def : ∀ (q : ℚ≥0) (a : α), LinearOrderedSemifield.nnqsmul q a = q * a

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use NNRat.smul_def instead.

Instances

A linear ordered field is a field with a linear order respecting the operations.

  • add : ααα
  • add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
  • zero : α
  • zero_add : ∀ (a : α), 0 + a = a
  • add_zero : ∀ (a : α), a + 0 = a
  • nsmul : αα
  • nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
  • nsmul_succ : ∀ (n : ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
  • add_comm : ∀ (a b : α), a + b = b + a
  • mul : ααα
  • left_distrib : ∀ (a b c : α), a * (b + c) = a * b + a * c
  • right_distrib : ∀ (a b c : α), (a + b) * c = a * c + b * c
  • zero_mul : ∀ (a : α), 0 * a = 0
  • mul_zero : ∀ (a : α), a * 0 = 0
  • mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
  • one : α
  • one_mul : ∀ (a : α), 1 * a = a
  • mul_one : ∀ (a : α), a * 1 = a
  • natCast : α
  • natCast_zero : NatCast.natCast 0 = 0
  • natCast_succ : ∀ (n : ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
  • npow : αα
  • npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
  • npow_succ : ∀ (n : ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
  • neg : αα
  • sub : ααα
  • sub_eq_add_neg : ∀ (a b : α), a - b = a + -b
  • zsmul : αα
  • zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
  • zsmul_succ' : ∀ (n : ) (a : α), Ring.zsmul (Int.ofNat n.succ) a = Ring.zsmul (Int.ofNat n) a + a
  • zsmul_neg' : ∀ (n : ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (n.succ) a
  • add_left_neg : ∀ (a : α), -a + a = 0
  • intCast : α
  • intCast_ofNat : ∀ (n : ), IntCast.intCast n = n
  • intCast_negSucc : ∀ (n : ), IntCast.intCast (Int.negSucc n) = -(n + 1)
  • le : ααProp
  • lt : ααProp
  • le_refl : ∀ (a : α), a a
  • le_trans : ∀ (a b c : α), a bb ca c
  • lt_iff_le_not_le : ∀ (a b : α), a < b a b ¬b a
  • le_antisymm : ∀ (a b : α), a bb aa = b
  • add_le_add_left : ∀ (a b : α), a b∀ (c : α), c + a c + b
  • exists_pair_ne : ∃ (x : α), ∃ (y : α), x y
  • zero_le_one : 0 1
  • mul_pos : ∀ (a b : α), 0 < a0 < b0 < a * b
  • min : ααα
  • max : ααα
  • compare : ααOrdering
  • le_total : ∀ (a b : α), a b b a
  • decidableLE : DecidableRel fun (x x_1 : α) => x x_1
  • decidableEq : DecidableEq α
  • decidableLT : DecidableRel fun (x x_1 : α) => x < x_1
  • min_def : ∀ (a b : α), min a b = if a b then a else b
  • max_def : ∀ (a b : α), max a b = if a b then b else a
  • compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
  • mul_comm : ∀ (a b : α), a * b = b * a
  • inv : αα
  • div : ααα
  • div_eq_mul_inv : ∀ (a b : α), a / b = a * b⁻¹

    a / b := a * b⁻¹

  • zpow : αα

    The power operation: a ^ n = a * ··· * a; a ^ (-n) = a⁻¹ * ··· a⁻¹ (n times)

  • zpow_zero' : ∀ (a : α), LinearOrderedField.zpow 0 a = 1

    a ^ 0 = 1

  • zpow_succ' : ∀ (n : ) (a : α), LinearOrderedField.zpow (Int.ofNat n.succ) a = LinearOrderedField.zpow (Int.ofNat n) a * a

    a ^ (n + 1) = a ^ n * a

  • zpow_neg' : ∀ (n : ) (a : α), LinearOrderedField.zpow (Int.negSucc n) a = (LinearOrderedField.zpow (n.succ) a)⁻¹

    a ^ -(n + 1) = (a ^ (n + 1))⁻¹

  • nnratCast : ℚ≥0α
  • ratCast : α
  • mul_inv_cancel : ∀ (a : α), a 0a * a⁻¹ = 1

    For a nonzero a, a⁻¹ is a right multiplicative inverse.

  • inv_zero : 0⁻¹ = 0

    The inverse of 0 is 0 by convention.

  • nnratCast_def : ∀ (q : ℚ≥0), q = q.num / q.den

    However NNRat.cast is defined, it must be equal to a / b.

    Do not use this lemma directly. Use NNRat.cast_def instead.

  • nnqsmul : ℚ≥0αα

    Scalar multiplication by a nonnegative rational number.

    Unless there is a risk of a Module ℚ≥0 _ instance diamond, write nnqsmul := _. This will set nnqsmul to (NNRat.cast · * ·) thanks to unification in the default proof of nnqsmul_def.

    Do not use directly. Instead use the notation.

  • nnqsmul_def : ∀ (q : ℚ≥0) (a : α), LinearOrderedField.nnqsmul q a = q * a

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use NNRat.smul_def instead.

  • ratCast_def : ∀ (q : ), q = q.num / q.den

    However Rat.cast q is defined, it must be propositionally equal to q.num / q.den.

    Do not use this lemma directly. Use Rat.cast_def instead.

  • qsmul : αα

    Scalar multiplication by a rational number.

    Unless there is a risk of a Module ℚ _ instance diamond, write qsmul := _. This will set qsmul to (Rat.cast · * ·) thanks to unification in the default proof of qsmul_def.

    Do not use directly. Instead use the notation.

  • qsmul_def : ∀ (a : ) (x : α), LinearOrderedField.qsmul a x = a * x

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use Rat.cast_def instead.

Instances
@[instance 100]
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem inv_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
0 < a⁻¹ 0 < a
theorem inv_pos_of_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
0 < a0 < a⁻¹

Alias of the reverse direction of inv_pos.

@[simp]
theorem inv_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
0 a⁻¹ 0 a
theorem inv_nonneg_of_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
0 a0 a⁻¹

Alias of the reverse direction of inv_nonneg.

@[simp]
theorem inv_lt_zero {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
a⁻¹ < 0 a < 0
@[simp]
theorem inv_nonpos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
a⁻¹ 0 a 0
theorem one_div_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
0 < 1 / a 0 < a
theorem one_div_neg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
1 / a < 0 a < 0
theorem one_div_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
0 1 / a 0 a
theorem one_div_nonpos {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
1 / a 0 a 0
theorem div_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 < a) (hb : 0 < b) :
0 < a / b
theorem div_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 a) (hb : 0 b) :
0 a / b
theorem div_nonpos_of_nonpos_of_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : a 0) (hb : 0 b) :
a / b 0
theorem div_nonpos_of_nonneg_of_nonpos {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 a) (hb : b 0) :
a / b 0
theorem zpow_nonneg {α : Type u_1} [LinearOrderedSemifield α] {a : α} (ha : 0 a) (n : ) :
0 a ^ n
theorem zpow_pos_of_pos {α : Type u_1} [LinearOrderedSemifield α] {a : α} (ha : 0 < a) (n : ) :
0 < a ^ n