class
LO.FirstOrder.Arithmetic.Bounded
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
(f : (Fin k → V) → V)
:
Instances
@[reducible, inline]
Equations
- LO.FirstOrder.Arithmetic.Bounded₁ f = LO.FirstOrder.Arithmetic.Bounded fun (v : Fin 1 → V) => f (v 0)
Instances For
@[reducible, inline]
Equations
- LO.FirstOrder.Arithmetic.Bounded₂ f = LO.FirstOrder.Arithmetic.Bounded fun (v : Fin 2 → V) => f (v 0) (v 1)
Instances For
@[reducible, inline]
Equations
- LO.FirstOrder.Arithmetic.Bounded₃ f = LO.FirstOrder.Arithmetic.Bounded fun (v : Fin 3 → V) => f (v 0) (v 1) (v 2)
Instances For
instance
LO.FirstOrder.Arithmetic.instBounded
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
(f : (Fin k → V) → V)
[h : Bounded f]
:
Bounded f
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bounded.var
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
(i : Fin k)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bounded.const
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
(c : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bounded.term
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
[V ⊧ₘ* 𝗣𝗔⁻]
(t : Semiterm ℒₒᵣ V k)
:
Bounded fun (v : Fin k → V) => Semiterm.valm V v id t
def
LO.FirstOrder.Arithmetic.DefinableBoundedFunction
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
(f : (Fin k → V) → V)
:
Equations
Instances For
@[reducible, inline]
abbrev
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₁
{V : Type u_2}
[ORingStructure V]
(f : V → V)
:
Equations
- LO.FirstOrder.Arithmetic.DefinableBoundedFunction₁ f = LO.FirstOrder.Arithmetic.DefinableBoundedFunction fun (v : Fin 1 → V) => f (v 0)
Instances For
@[reducible, inline]
abbrev
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₂
{V : Type u_2}
[ORingStructure V]
(f : V → V → V)
:
Equations
- LO.FirstOrder.Arithmetic.DefinableBoundedFunction₂ f = LO.FirstOrder.Arithmetic.DefinableBoundedFunction fun (v : Fin 2 → V) => f (v 0) (v 1)
Instances For
@[reducible, inline]
abbrev
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₃
{V : Type u_2}
[ORingStructure V]
(f : V → V → V → V)
:
Equations
- LO.FirstOrder.Arithmetic.DefinableBoundedFunction₃ f = LO.FirstOrder.Arithmetic.DefinableBoundedFunction fun (v : Fin 3 → V) => f (v 0) (v 1) (v 2)
Instances For
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.bounded
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
{f : (Fin k → V) → V}
(h : DefinableBoundedFunction f)
:
Bounded f
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₁.bounded
{V : Type u_2}
[ORingStructure V]
{f : V → V}
(h : DefinableBoundedFunction₁ f)
:
Bounded₁ f
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₂.bounded
{V : Type u_2}
[ORingStructure V]
{f : V → V → V}
(h : DefinableBoundedFunction₂ f)
:
Bounded₂ f
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₃.bounded
{V : Type u_2}
[ORingStructure V]
{f : V → V → V → V}
(h : DefinableBoundedFunction₃ f)
:
Bounded₃ f
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.definable
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
{k : ℕ}
{f : (Fin k → V) → V}
(h : DefinableBoundedFunction f)
:
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₁.definable
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
{f : V → V}
(h : DefinableBoundedFunction₁ f)
:
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₂.definable
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
{f : V → V → V}
(h : DefinableBoundedFunction₂ f)
:
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₃.definable
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
{f : V → V → V → V}
(h : DefinableBoundedFunction₃ f)
:
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.of_polybounded_of_definable
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
(f : (Fin k → V) → V)
[hb : Bounded f]
[hf : 𝚺₀.DefinableFunction f]
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.of_polybounded_of_definable₁
{V : Type u_2}
[ORingStructure V]
(f : V → V)
[hb : Bounded₁ f]
[hf : 𝚺₀-Function₁ f]
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.of_polybounded_of_definable₂
{V : Type u_2}
[ORingStructure V]
(f : V → V → V)
[hb : Bounded₂ f]
[hf : 𝚺₀-Function₂ f]
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.of_polybounded_of_definable₃
{V : Type u_2}
[ORingStructure V]
(f : V → V → V → V)
[hb : Bounded₃ f]
[hf : 𝚺₀-Function₃ f]
:
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.retraction
{n : ℕ}
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(e : Fin k → Fin n)
:
DefinableBoundedFunction fun (v : Fin n → V) => f fun (i : Fin k) => v (e i)
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.ball_blt
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : ℌ.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bex_blt
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : ℌ.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.ball_ble
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : ℌ.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bex_ble
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : ℌ.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.ball_blt_zero
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : { Γ := Γ, rank := 0 }.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bex_blt_zero
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : { Γ := Γ, rank := 0 }.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.ball_ble_zero
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : { Γ := Γ, rank := 0 }.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bex_ble_zero
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → V → Prop}
{f : (Fin k → V) → V}
(hf : DefinableBoundedFunction f)
(h : { Γ := Γ, rank := 0 }.Definable fun (w : Fin (k + 1) → V) => P (fun (x : Fin k) => w x.succ) (w 0))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bex_vec_le_boldfaceBoundedFunction
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{l k : ℕ}
{φ : Fin l → (Fin k → V) → V}
{P : (Fin k → V) → (Fin l → V) → Prop}
(pp : ∀ (i : Fin l), DefinableBoundedFunction (φ i))
(hP :
ℌ.Definable fun (w : Fin (k + l) → V) =>
P (fun (i : Fin k) => w (Fin.castAdd l i)) fun (j : Fin l) => w (Fin.natAdd k j))
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.substitution_boldfaceBoundedFunction
{k : ℕ}
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{P : (Fin k → V) → Prop}
{l : ℕ}
{f : Fin k → (Fin l → V) → V}
(hP : ℌ.Definable P)
(hf : ∀ (i : Fin k), DefinableBoundedFunction (f i))
:
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.of_iff
{V : Type u_2}
[ORingStructure V]
{k : ℕ}
{f g : (Fin k → V) → V}
(H : DefinableBoundedFunction f)
(h : ∀ (v : Fin k → V), f v = g v)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.var
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
(i : Fin k)
:
DefinableBoundedFunction fun (v : Fin k → V) => v i
@[simp]
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.const
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
(c : V)
:
DefinableBoundedFunction fun (x : Fin k → V) => c
@[simp]
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.term_retraction
{n : ℕ}
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
(t : Semiterm ℒₒᵣ V n)
(e : Fin n → Fin k)
:
DefinableBoundedFunction fun (v : Fin k → V) => Semiterm.valm V (fun (x : Fin n) => v (e x)) id t
@[simp]
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.term
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
(t : Semiterm ℒₒᵣ V k)
:
DefinableBoundedFunction fun (v : Fin k → V) => Semiterm.valm V v id t
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₁
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{P : V → Prop}
{f : (Fin k → V) → V}
[hP : ℌ-Predicate P]
(hf : DefinableBoundedFunction f)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₂
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{R : V → V → Prop}
{f₁ f₂ : (Fin k → V) → V}
[hR : ℌ-Relation R]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₃
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{R : V → V → V → Prop}
{f₁ f₂ f₃ : (Fin k → V) → V}
[hR : ℌ-Relation₃ R]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
(hf₃ : DefinableBoundedFunction f₃)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₄
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{R : V → V → V → V → Prop}
{f₁ f₂ f₃ f₄ : (Fin k → V) → V}
[hR : ℌ-Relation₄ R]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
(hf₃ : DefinableBoundedFunction f₃)
(hf₄ : DefinableBoundedFunction f₄)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₁_zero
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{P : V → Prop}
{f : (Fin k → V) → V}
[hP : { Γ := Γ, rank := 0 }-Predicate P]
(hf : DefinableBoundedFunction f)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₂_zero
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{R : V → V → Prop}
{f₁ f₂ : (Fin k → V) → V}
[hR : { Γ := Γ, rank := 0 }-Relation R]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₃_zero
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{R : V → V → V → Prop}
{f₁ f₂ f₃ : (Fin k → V) → V}
[hR : { Γ := Γ, rank := 0 }-Relation₃ R]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
(hf₃ : DefinableBoundedFunction f₃)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.Definable.bcomp₄_zero
{V : Type u_2}
[ORingStructure V]
{Γ : SigmaPiDelta}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{R : V → V → V → V → Prop}
{f₁ f₂ f₃ f₄ : (Fin k → V) → V}
[hR : { Γ := Γ, rank := 0 }-Relation₄ R]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
(hf₃ : DefinableBoundedFunction f₃)
(hf₄ : DefinableBoundedFunction f₄)
:
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.DefinableFunction.bcomp
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{l k : ℕ}
{F : (Fin l → V) → V}
{f : Fin l → (Fin k → V) → V}
(hF : ℌ.DefinableFunction F)
(hf : ∀ (i : Fin l), DefinableBoundedFunction (f i))
:
ℌ.DefinableFunction fun (v : Fin k → V) => F fun (x : Fin l) => f x v
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.DefinableFunction₁.bcomp
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V}
{f : (Fin k → V) → V}
(hF : ℌ-Function₁ F)
(hf : DefinableBoundedFunction f)
:
ℌ.DefinableFunction fun (v : Fin k → V) => F (f v)
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.DefinableFunction₂.bcomp
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V → V}
{f₁ f₂ : (Fin k → V) → V}
(hF : ℌ-Function₂ F)
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
:
ℌ.DefinableFunction fun (v : Fin k → V) => F (f₁ v) (f₂ v)
theorem
LO.FirstOrder.Arithmetic.HierarchySymbol.DefinableFunction₃.bcomp
{V : Type u_2}
[ORingStructure V]
{ℌ : HierarchySymbol}
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V → V → V}
{f₁ f₂ f₃ : (Fin k → V) → V}
(hF : ℌ-Function₃ F)
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
(hf₃ : DefinableBoundedFunction f₃)
:
ℌ.DefinableFunction fun (v : Fin k → V) => F (f₁ v) (f₂ v) (f₃ v)
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₁.comp
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V}
{f : (Fin k → V) → V}
(hF : DefinableBoundedFunction₁ F)
(hf : DefinableBoundedFunction f)
:
DefinableBoundedFunction fun (v : Fin k → V) => F (f v)
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₂.comp
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V → V}
{f₁ f₂ : (Fin k → V) → V}
(hF : DefinableBoundedFunction₂ F)
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
:
DefinableBoundedFunction fun (v : Fin k → V) => F (f₁ v) (f₂ v)
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction₃.comp
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V → V → V}
{f₁ f₂ f₃ : (Fin k → V) → V}
(hF : DefinableBoundedFunction₃ F)
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
(hf₃ : DefinableBoundedFunction f₃)
:
DefinableBoundedFunction fun (v : Fin k → V) => F (f₁ v) (f₂ v) (f₃ v)
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.comp₁
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V}
{f : (Fin k → V) → V}
[hFb : Bounded₁ F]
[hFd : 𝚺₀-Function₁ F]
(hf : DefinableBoundedFunction f)
:
DefinableBoundedFunction fun (v : Fin k → V) => F (f v)
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.comp₂
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V → V}
{f₁ f₂ : (Fin k → V) → V}
[hFb : Bounded₂ F]
[hFd : 𝚺₀-Function₂ F]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
:
DefinableBoundedFunction fun (v : Fin k → V) => F (f₁ v) (f₂ v)
theorem
LO.FirstOrder.Arithmetic.DefinableBoundedFunction.comp₃
{V : Type u_2}
[ORingStructure V]
[V ⊧ₘ* 𝗣𝗔⁻]
{k : ℕ}
{F : V → V → V → V}
{f₁ f₂ f₃ : (Fin k → V) → V}
[hFb : Bounded₃ F]
[hFd : 𝚺₀-Function₃ F]
(hf₁ : DefinableBoundedFunction f₁)
(hf₂ : DefinableBoundedFunction f₂)
(hf₃ : DefinableBoundedFunction f₃)
:
DefinableBoundedFunction fun (v : Fin k → V) => F (f₁ v) (f₂ v) (f₃ v)