Sequence #
Equations
- LO.ISigma1.Seq s = (LO.ISigma1.IsMapping s ∧ ∃ (l : V), LO.ISigma1.domain s = LO.ISigma1.under l)
Instances For
Equations
- ⋯ = ⋯
Equations
- One or more equations did not get rendered due to their size.
@[simp]
instance
LO.ISigma1.seq_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(ℌ : FirstOrder.Arith.HierarchySymbol)
:
Equations
- One or more equations did not get rendered due to their size.
Equations
theorem
LO.ISigma1.lh_prop_of_not_seq
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{s : V}
(h : ¬Seq s)
:
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
instance
LO.ISigma1.lh_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(ℌ : FirstOrder.Arith.HierarchySymbol)
:
noncomputable def
LO.ISigma1.Seq.nth
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{s : V}
(h : Seq s)
{x : V}
(hx : x < lh s)
:
V
Equations
- h.nth hx = Classical.choose! ⋯
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
LO.ISigma1.eval_znthDef
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(v : Fin 3 → V)
:
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val FirstOrder.Arith.znthDef) ↔ v 0 = znth (v 1) (v 2)
instance
LO.ISigma1.znth_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(ℌ : FirstOrder.Arith.HierarchySymbol)
:
Equations
- LO.ISigma1.«term_⁀'_» = Lean.ParserDescr.trailingNode `LO.ISigma1.«term_⁀'_» 67 68 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⁀' ") (Lean.ParserDescr.cat `term 67))
@[simp]
theorem
LO.ISigma1.Seq.lt_seqCons
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{s : V}
(hs : Seq s)
(x : V)
:
theorem
LO.ISigma1.Seq.seqCons
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{s : V}
(h : Seq s)
(x : V)
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
LO.ISigma1.seqCons_defined_iff
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(v : Fin 3 → V)
:
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val FirstOrder.Arith.seqConsDef) ↔ v 0 = v 1 ⁀' v 2
instance
LO.ISigma1.seqCons_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(ℌ : FirstOrder.Arith.HierarchySymbol)
:
theorem
LO.ISigma1.Seq.restr
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{s : V}
(H : Seq s)
{i : V}
(hi : i ≤ lh s)
:
Seq (ISigma1.restr s (under i))
theorem
LO.ISigma1.Seq.restr_lh
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{s : V}
(H : Seq s)
{i : V}
(hi : i ≤ lh s)
:
TODO: move to Lemmata.lean
Alias of the forward direction of LO.ISigma1.Seq.cases_iff
.
theorem
LO.ISigma1.seq_induction
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(Γ : SigmaPiDelta)
{P : V → Prop}
(hP : { Γ := Γ, rank := 1 }-Predicate P)
(hnil : P ∅)
(hcons : ∀ (s x : V), Seq s → P s → P (s ⁀' x))
{s : V}
:
Seq s → P s
!⟦x, y, z, ...⟧
notation for Seq
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
instance
LO.ISigma1.mkSeq₁_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(Γ : FirstOrder.Arith.HierarchySymbol)
:
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
LO.ISigma1.eval_mkSeq₂Def
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(v : Fin 3 → V)
:
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val FirstOrder.Arith.mkSeq₂Def) ↔ v 0 = !⟦v 1, v 2⟧
instance
LO.ISigma1.mkSeq₂_definable'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(Γ : SigmaPiDelta)
(m : ℕ)
:
noncomputable def
LO.ISigma1.vecToSeq
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{n : ℕ}
:
(Fin n → V) → V
Equations
- LO.ISigma1.vecToSeq x_2 = ∅
- LO.ISigma1.vecToSeq v = (LO.ISigma1.vecToSeq fun (x : Fin n) => v x.castSucc) ⁀' v (Fin.last n)
@[simp]
theorem
LO.ISigma1.order_ball_ISigma1.sigma1_succ_induction
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{f : V → V → V}
(hf : 𝚺₁-Function₂ f)
{P : V → V → Prop}
(hP : 𝚺₁-Relation P)
(ind : ∀ (x y : V), (∀ x' < x, ∀ y' ≤ f x y, P x' y') → P x y)
(x y : V)
:
P x y
theorem
LO.ISigma1.order_ball_ISigma1.sigma1_succ_induction'
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{f : V → V}
(hf : 𝚺₁-Function₁ f)
{P : V → V → Prop}
(hP : 𝚺₁-Relation P)
(ind : ∀ (x y : V), (∀ x' < x, ∀ y' ≤ f y, P x' y') → P x y)
(x y : V)
:
P x y
theorem
LO.ISigma1.order_ball_induction₂_sigma1
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{fy fz : V → V → V → V}
(hfy : 𝚺₁-Function₃ fy)
(hfz : 𝚺₁-Function₃ fz)
{P : V → V → V → Prop}
(hP : 𝚺₁-Relation₃ P)
(ind : ∀ (x y z : V), (∀ x' < x, ∀ y' ≤ fy x y z, ∀ z' ≤ fz x y z, P x' y' z') → P x y z)
(x y z : V)
:
P x y z
theorem
LO.ISigma1.order_ball_induction₃_sigma1
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{fy fz fw : V → V → V → V → V}
(hfy : 𝚺₁-Function₄ fy)
(hfz : 𝚺₁-Function₄ fz)
(hfw : 𝚺₁-Function₄ fw)
{P : V → V → V → V → Prop}
(hP : 𝚺₁-Relation₄ P)
(ind : ∀ (x y z w : V), (∀ x' < x, ∀ y' ≤ fy x y z w, ∀ z' ≤ fz x y z w, ∀ w' ≤ fw x y z w, P x' y' z' w') → P x y z w)
(x y z w : V)
:
P x y z w