Documentation

Foundation.FirstOrder.NegationTranslation.GoedelGentzen

@[simp]
theorem LO.FirstOrder.Sequent.neg_def {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) :
Γ = List.map (fun (x : Semiformula L ξ n) => x) Γ
@[simp]
theorem LO.FirstOrder.Sequent.neg_nil {L : Language} {ξ : Type u_2} {n : } :
@[simp]
theorem LO.FirstOrder.Sequent.neg_cons {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) (φ : Semiformula L ξ n) :
(φ :: Γ) = φ :: Γ
@[simp]
theorem LO.FirstOrder.Sequent.neg_neg_eq {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) :
Γ = Γ
@[simp]
theorem LO.FirstOrder.Semiformula.doubleNegation_rel {L : Language} {ξ : Type u_2} {n k : } (r : L.Rel k) (v : Fin kSemiterm L ξ n) :
@[simp]
theorem LO.FirstOrder.Semiformula.doubleNegation_nrel {L : Language} {ξ : Type u_2} {n k : } (r : L.Rel k) (v : Fin kSemiterm L ξ n) :
@[simp]
theorem LO.FirstOrder.Semiformula.rew_doubleNegation {L : Language} {ξ₁ : Type u_2} {n₁ : } {ξ₂ : Type u_3} {n₂ : } (ω : Rew L ξ₁ n₁ ξ₂ n₂) (φ : Semiformula L ξ₁ n₁) :
theorem LO.FirstOrder.Semiformula.subst_doubleNegation {L : Language} {ξ : Type u_2} {n₁ n₂ : } (φ : Semiformula L ξ n₁) (v : Fin n₁Semiterm L ξ n₂) :
theorem LO.FirstOrder.Semiformula.emb_doubleNegation {L : Language} {n₁ : } {ξ : Type u_2} (φ : Semisentence L n₁) :
@[reducible, inline]
abbrev LO.FirstOrder.Sequent.doubleNegation {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) :
Equations
Instances For

    Gödel-Gentzen translation of classical first-order logic to intiotionistic first-order logic.