ZermeloβFraenkel set theory #
reference: Ralf Schindler, "Set Theory, Exploring Independence and Truth"
- equal (Ο : FirstOrder.Sentence ββββ) : Ο β ππ€ β ππ Ο
- empty : ππ FirstOrder.SetTheory.Axiom.empty
- extentionality : ππ FirstOrder.SetTheory.Axiom.extentionality
- pairing : ππ FirstOrder.SetTheory.Axiom.pairing
- union : ππ FirstOrder.SetTheory.Axiom.union
- power : ππ FirstOrder.SetTheory.Axiom.power
- infinity : ππ FirstOrder.SetTheory.Axiom.infinity
- foundation : ππ FirstOrder.SetTheory.Axiom.foundation
- separation (Ο : FirstOrder.SyntacticSemiformula ββββ 1) : ππ (FirstOrder.SetTheory.Axiom.separationSchema Ο)
- replacement (Ο : FirstOrder.SyntacticSemiformula ββββ 2) : ππ (FirstOrder.SetTheory.Axiom.replacementSchema Ο)
Instances For
Equations
- LO.Β«termππΒ» = Lean.ParserDescr.node `LO.Β«termππΒ» 1024 (Lean.ParserDescr.symbol "ππ")