theorem
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomR.of_validate_axiomP₀
{F : Frame}
[F.IsIL]
(h : F ⊧ Axioms.P₀ (Formula.atom 0) (Formula.atom 1))
:
theorem
LO.InterpretabilityLogic.Veltman.validate_axiomP₀_of_validate_axiomR
{F : Frame}
{φ ψ : Formula ℕ}
[F.IsIL]
(h : F ⊧ Axioms.R (Formula.atom 0) (Formula.atom 1) (Formula.atom 2))
:
theorem
LO.InterpretabilityLogic.Veltman.TFAE_HasAxiomR
{F : Frame}
[F.IsIL]
:
[F.HasAxiomR, F ⊧ Axioms.R (Formula.atom 0) (Formula.atom 1) (Formula.atom 2), F ⊧ Axioms.P₀ (Formula.atom 0) (Formula.atom 1)].TFAE
theorem
LO.InterpretabilityLogic.Veltman.Frame.HasAxiomR.of_validate_axiomR
{F : Frame}
[F.IsIL]
(h : F ⊧ Axioms.R (Formula.atom 0) (Formula.atom 1) (Formula.atom 2))
: