Equations
- LO.Modal.Formula.«term-_» = Lean.ParserDescr.node `LO.Modal.Formula.«term-_» 80 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "-") (Lean.ParserDescr.cat `term 80))
Instances For
Equations
Instances For
Equations
- LO.Modal.FormulaFinset.«term_⁻» = Lean.ParserDescr.trailingNode `LO.Modal.FormulaFinset.«term_⁻» 80 80 (Lean.ParserDescr.symbol "⁻")
Instances For
theorem
LO.Modal.FormulaFinset.complementary_mem
{α : Type u_1}
[DecidableEq α]
{P : FormulaFinset α}
{φ : Formula α}
(h : φ ∈ P)
:
theorem
LO.Modal.FormulaFinset.complementary_comp
{α : Type u_1}
[DecidableEq α]
{P : FormulaFinset α}
{φ : Formula α}
(h : φ ∈ P)
:
theorem
LO.Modal.FormulaFinset.mem_of
{α : Type u_1}
[DecidableEq α]
{P : FormulaFinset α}
{φ : Formula α}
(h : φ ∈ P⁻)
:
theorem
LO.Modal.FormulaFinset.complementary_mem_box
{α : Type u_1}
[DecidableEq α]
{P : FormulaFinset α}
{φ : Formula α}
(hi : ∀ {ψ χ : Formula α}, ψ ➝ χ ∈ P → ψ ∈ P := by subformula)
:
class
LO.Modal.FormulaFinset.ComplementaryClosed
{α : Type u_1}
[DecidableEq α]
(P S : FormulaFinset α)
:
Instances
def
LO.Modal.FormulaFinset.SubformulaeComplementaryClosed
{α : Type u_1}
[DecidableEq α]
(P : FormulaFinset α)
(φ : Formula α)
:
Equations
Instances For
theorem
LO.Modal.complement_derive_bot
{α : Type u_1}
{S : Type u_2}
[Entailment (Formula α) S]
{𝓢 : S}
[Entailment.ModusPonens 𝓢]
{φ : Formula α}
[DecidableEq α]
(hp : 𝓢 ⊢! φ)
(hcp : 𝓢 ⊢! -φ)
:
theorem
LO.Modal.neg_complement_derive_bot
{α : Type u_1}
{S : Type u_2}
[Entailment (Formula α) S]
{𝓢 : S}
[Entailment.ModusPonens 𝓢]
{φ : Formula α}
[DecidableEq α]
(hp : 𝓢 ⊢! ∼φ)
(hcp : 𝓢 ⊢! ∼-φ)
: