Documentation

Foundation.Modal.Entailment.E

def LO.Entailment.C_replace {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.Minimal 𝓒] {Οˆβ‚ φ₁ Ο†β‚‚ Οˆβ‚‚ : F} [HasAxiomImply₁ 𝓒] [HasAxiomImplyβ‚‚ 𝓒] (h₁ : 𝓒 ⊒! Οˆβ‚ ➝ φ₁) (hβ‚‚ : 𝓒 ⊒! Ο†β‚‚ ➝ Οˆβ‚‚) :
𝓒 ⊒! φ₁ ➝ Ο†β‚‚ β†’ 𝓒 ⊒! Οˆβ‚ ➝ Οˆβ‚‚
Equations
Instances For
    def LO.Modal.Entailment.multire {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† ψ : F} {n : β„•} (h : 𝓒 ⊒! Ο† β­€ ψ) :
    Equations
    Instances For
      theorem LO.Modal.Entailment.multire! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† ψ : F} {n : β„•} (h : 𝓒 ⊒ Ο† β­€ ψ) :
      𝓒 ⊒ β–‘^[n]Ο† β­€ β–‘^[n]ψ
      @[simp]
      theorem LO.Modal.Entailment.multi_ELLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
      @[simp]
      theorem LO.Modal.Entailment.ELLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
      @[simp]
      theorem LO.Modal.Entailment.ILLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
      theorem LO.Modal.Entailment.box_dni! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :

      Alias of LO.Modal.Entailment.ILLNN.

      @[simp]
      theorem LO.Modal.Entailment.ILNNL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
      theorem LO.Modal.Entailment.box_dne! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :

      Alias of LO.Modal.Entailment.ILNNL.

      def LO.Modal.Entailment.box_dne' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒! β–‘(βˆΌβˆΌΟ†)) :
      𝓒 ⊒! β–‘Ο†
      Equations
      Instances For
        theorem LO.Modal.Entailment.box_dne'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ β–‘(βˆΌβˆΌΟ†)) :
        𝓒 ⊒ β–‘Ο†
        @[simp]
        theorem LO.Modal.Entailment.INMNL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
        @[simp]
        theorem LO.Modal.Entailment.INLMN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
        def LO.Modal.Entailment.multiDiaDuality {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem LO.Modal.Entailment.multidia_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          @[simp]
          theorem LO.Modal.Entailment.multidia_duality!_mp {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          @[simp]
          theorem LO.Modal.Entailment.dia_duality!_mp {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
          @[simp]
          theorem LO.Modal.Entailment.multidia_duality!_mpr {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          @[simp]
          theorem LO.Modal.Entailment.dia_duality!_mpr {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
          theorem LO.Modal.Entailment.dia_duality'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} :
          𝓒 ⊒ β—‡Ο† ↔ 𝓒 ⊒ βˆΌβ–‘(βˆΌΟ†)
          theorem LO.Modal.Entailment.multidia_duality'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          𝓒 ⊒ β—‡^[n]Ο† ↔ 𝓒 ⊒ βˆΌβ–‘^[n](βˆΌΟ†)
          def LO.Modal.Entailment.multiboxDuality {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem LO.Modal.Entailment.multibox_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
            @[simp]
            theorem LO.Modal.Entailment.multibox_duality_mp! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
            theorem LO.Modal.Entailment.multibox_duality_mp'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ β–‘^[n]Ο†) :
            @[simp]
            theorem LO.Modal.Entailment.multibox_duality_mpr! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
            theorem LO.Modal.Entailment.multibox_duality_mpr'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ βˆΌβ—‡^[n](βˆΌΟ†)) :
            𝓒 ⊒ β–‘^[n]Ο†
            @[simp]
            theorem LO.Modal.Entailment.box_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
            @[simp]
            theorem LO.Modal.Entailment.boxDuality_mp! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
            def LO.Modal.Entailment.boxDuality_mp' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒! β–‘Ο†) :
            Equations
            Instances For
              theorem LO.Modal.Entailment.boxDuality_mp'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ β–‘Ο†) :
              𝓒 ⊒ βˆΌβ—‡(βˆΌΟ†)
              @[simp]
              theorem LO.Modal.Entailment.boxDuality_mpr! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
              def LO.Modal.Entailment.boxDuality_mpr' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒! βˆΌβ—‡(βˆΌΟ†)) :
              𝓒 ⊒! β–‘Ο†
              Equations
              Instances For
                theorem LO.Modal.Entailment.boxDuality_mpr'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ βˆΌβ—‡(βˆΌΟ†)) :
                𝓒 ⊒ β–‘Ο†