Documentation

Foundation.Modal.Entailment.E

def LO.Modal.Entailment.multire {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ ψ : F} {n : } (h : 𝓢 ⊢! φ ψ) :
𝓢 ⊢! □^[n]φ □^[n]ψ
Equations
Instances For
    theorem LO.Modal.Entailment.multire! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ ψ : F} {n : } (h : 𝓢 φ ψ) :
    𝓢 □^[n]φ □^[n]ψ
    @[simp]
    theorem LO.Modal.Entailment.multi_ELLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
    𝓢 □^[n]φ □^[n](φ)
    @[simp]
    theorem LO.Modal.Entailment.ELLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
    𝓢 φ (φ)
    @[simp]
    theorem LO.Modal.Entailment.ILLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
    𝓢 φ (φ)
    theorem LO.Modal.Entailment.box_dni! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
    𝓢 φ (φ)

    Alias of LO.Modal.Entailment.ILLNN.

    @[simp]
    theorem LO.Modal.Entailment.ILNNL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
    𝓢 (φ) φ
    theorem LO.Modal.Entailment.box_dne! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
    𝓢 (φ) φ

    Alias of LO.Modal.Entailment.ILNNL.

    def LO.Modal.Entailment.box_dne' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] (h : 𝓢 ⊢! (φ)) :
    𝓢 ⊢! φ
    Equations
    Instances For
      theorem LO.Modal.Entailment.box_dne'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] (h : 𝓢 (φ)) :
      𝓢 φ
      @[simp]
      theorem LO.Modal.Entailment.INMNL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
      𝓢 (φ) φ
      @[simp]
      theorem LO.Modal.Entailment.INLMN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
      𝓢 φ (φ)
      def LO.Modal.Entailment.multiDiaDuality {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem LO.Modal.Entailment.multidia_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
        𝓢 ◇^[n]φ □^[n](φ)
        @[simp]
        theorem LO.Modal.Entailment.multidia_duality!_mp {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
        𝓢 ◇^[n]φ □^[n](φ)
        @[simp]
        theorem LO.Modal.Entailment.dia_duality!_mp {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
        𝓢 φ (φ)
        @[simp]
        theorem LO.Modal.Entailment.multidia_duality!_mpr {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
        𝓢 □^[n](φ) ◇^[n]φ
        @[simp]
        theorem LO.Modal.Entailment.dia_duality!_mpr {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
        𝓢 (φ) φ
        theorem LO.Modal.Entailment.dia_duality'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} :
        𝓢 φ 𝓢 (φ)
        theorem LO.Modal.Entailment.multidia_duality'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
        𝓢 ◇^[n]φ 𝓢 □^[n](φ)
        def LO.Modal.Entailment.multiboxDuality {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem LO.Modal.Entailment.multibox_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
          𝓢 □^[n]φ ◇^[n](φ)
          @[simp]
          theorem LO.Modal.Entailment.multibox_duality_mp! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
          𝓢 □^[n]φ ◇^[n](φ)
          theorem LO.Modal.Entailment.multibox_duality_mp'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] (h : 𝓢 □^[n]φ) :
          𝓢 ◇^[n](φ)
          @[simp]
          theorem LO.Modal.Entailment.multibox_duality_mpr! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] :
          𝓢 ◇^[n](φ) □^[n]φ
          theorem LO.Modal.Entailment.multibox_duality_mpr'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {n : } {φ : F} [DecidableEq F] (h : 𝓢 ◇^[n](φ)) :
          𝓢 □^[n]φ
          @[simp]
          theorem LO.Modal.Entailment.box_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
          𝓢 φ (φ)
          @[simp]
          theorem LO.Modal.Entailment.boxDuality_mp! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
          𝓢 φ (φ)
          theorem LO.Modal.Entailment.boxDuality_mp'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] (h : 𝓢 φ) :
          𝓢 (φ)
          @[simp]
          theorem LO.Modal.Entailment.boxDuality_mpr! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] :
          𝓢 (φ) φ
          theorem LO.Modal.Entailment.boxDuality_mpr'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓢 : S} [Entailment.E 𝓢] {φ : F} [DecidableEq F] (h : 𝓢 (φ)) :
          𝓢 φ