def
LO.Entailment.C_replace
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.Minimal π’]
{Οβ Οβ Οβ Οβ : F}
[HasAxiomImplyβ π’]
[HasAxiomImplyβ π’]
(hβ : π’ β’! Οβ β Οβ)
(hβ : π’ β’! Οβ β Οβ)
:
Equations
- LO.Entailment.C_replace hβ hβ h = LO.Entailment.C_trans hβ (LO.Entailment.C_trans h hβ)
Instances For
def
LO.Modal.Entailment.ELLNN!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.ELLNN
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.ILLNN!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.ILLNN
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.box_dni
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILLNN!
.
Instances For
theorem
LO.Modal.Entailment.box_dni!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILLNN
.
def
LO.Modal.Entailment.ILNNL!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.ILNNL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.box_dne
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILNNL!
.
Instances For
theorem
LO.Modal.Entailment.box_dne!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILNNL
.
def
LO.Modal.Entailment.box_dne'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
(h : π’ β’! β‘(βΌβΌΟ))
:
Instances For
theorem
LO.Modal.Entailment.box_dne'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
(h : π’ β’ β‘(βΌβΌΟ))
:
def
LO.Modal.Entailment.INMNL!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Equations
Instances For
@[simp]
theorem
LO.Modal.Entailment.INMNL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.INLMN!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.INLMN
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multiDiaDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Modal.Entailment.multidia_duality!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multidiaDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.diaDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
def
LO.Modal.Entailment.multidiaDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.diaDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
def
LO.Modal.Entailment.diaDuality'.mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
(h : π’ β’! βΟ)
:
Equations
Instances For
def
LO.Modal.Entailment.diaDuality'.mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
(h : π’ β’! βΌβ‘(βΌΟ))
:
Equations
Instances For
@[simp]
theorem
LO.Modal.Entailment.multidia_duality!_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.dia_duality!_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.multidia_duality!_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.dia_duality!_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
theorem
LO.Modal.Entailment.dia_duality'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
:
theorem
LO.Modal.Entailment.multidia_duality'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multiboxDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.Modal.Entailment.multibox_duality!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multiboxDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.boxDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
def
LO.Modal.Entailment.multiboxDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.boxDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.multibox_duality_mp!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
theorem
LO.Modal.Entailment.multibox_duality_mp'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
(h : π’ β’ β‘^[n]Ο)
:
@[simp]
theorem
LO.Modal.Entailment.multibox_duality_mpr!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
:
theorem
LO.Modal.Entailment.multibox_duality_mpr'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{n : β}
{Ο : F}
[DecidableEq F]
(h : π’ β’ βΌβ^[n](βΌΟ))
:
def
LO.Modal.Entailment.boxDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.box_duality!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.boxDuality_mp!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.boxDuality_mp'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
(h : π’ β’! β‘Ο)
:
Instances For
theorem
LO.Modal.Entailment.boxDuality_mp'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
(h : π’ β’ β‘Ο)
:
@[simp]
theorem
LO.Modal.Entailment.boxDuality_mpr!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.boxDuality_mpr'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
(h : π’ β’! βΌβ(βΌΟ))
:
Instances For
theorem
LO.Modal.Entailment.boxDuality_mpr'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
(h : π’ β’ βΌβ(βΌΟ))
:
instance
LO.Modal.Entailment.HasAxiomFour.of_dual
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
[DecidableEq F]
(h : (Ο : F) β π’ β’! ββΟ β βΟ)
:
HasAxiomFour π’
Equations
- One or more equations did not get rendered due to their size.
def
LO.Modal.Entailment.axiomFourDual!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
[HasAxiomFour π’]
:
Equations
Instances For
@[simp]
theorem
LO.Modal.Entailment.axiomFourDual
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
[HasAxiomFour π’]
:
def
LO.Modal.Entailment.axiomFiveDual!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
[HasAxiomFive π’]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.Modal.Entailment.axiomFiveDual
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
[HasAxiomFive π’]
:
def
LO.Modal.Entailment.axiomTDual!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
[HasAxiomT π’]
:
Equations
Instances For
@[simp]
theorem
LO.Modal.Entailment.axiomTDual
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment F S]
{π’ : S}
[Entailment.E π’]
{Ο : F}
[DecidableEq F]
[HasAxiomT π’]
: