def
LO.Modal.Entailment.multire
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ ψ : F}
{n : ℕ}
(h : 𝓢 ⊢! φ ⭤ ψ)
:
Equations
- LO.Modal.Entailment.multire h = Nat.recAux (id h) (fun (n : ℕ) (ih : 𝓢 ⊢! □^[n]φ ⭤ □^[n]ψ) => ⋯.mpr (LO.Modal.Entailment.re ih)) n
Instances For
theorem
LO.Modal.Entailment.multire!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ ψ : F}
{n : ℕ}
(h : 𝓢 ⊢ φ ⭤ ψ)
:
def
LO.Modal.Entailment.multi_ELLNN!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.multi_ELLNN
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.ELLNN!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.ELLNN
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.ILLNN!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.ILLNN
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.box_dni
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILLNN!.
Instances For
theorem
LO.Modal.Entailment.box_dni!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILLNN.
def
LO.Modal.Entailment.ILNNL!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.ILNNL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.box_dne
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILNNL!.
Instances For
theorem
LO.Modal.Entailment.box_dne!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Alias of LO.Modal.Entailment.ILNNL.
def
LO.Modal.Entailment.box_dne'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢! □(∼∼φ))
:
Instances For
theorem
LO.Modal.Entailment.box_dne'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢ □(∼∼φ))
:
def
LO.Modal.Entailment.INMNL!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Equations
Instances For
@[simp]
theorem
LO.Modal.Entailment.INMNL
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.INLMN!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.INLMN
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multiDiaDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Modal.Entailment.multidia_duality!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multidiaDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.diaDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
def
LO.Modal.Entailment.multidiaDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.diaDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
def
LO.Modal.Entailment.diaDuality'.mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
(h : 𝓢 ⊢! ◇φ)
:
Equations
Instances For
def
LO.Modal.Entailment.diaDuality'.mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
(h : 𝓢 ⊢! ∼□(∼φ))
:
Equations
Instances For
@[simp]
theorem
LO.Modal.Entailment.multidia_duality!_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.dia_duality!_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.multidia_duality!_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.dia_duality!_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
theorem
LO.Modal.Entailment.dia_duality'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
:
theorem
LO.Modal.Entailment.multidia_duality'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multiboxDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.Modal.Entailment.multibox_duality!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.multiboxDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.boxDuality_mp
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
def
LO.Modal.Entailment.multiboxDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
Equations
Instances For
def
LO.Modal.Entailment.boxDuality_mpr
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.multibox_duality_mp!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
theorem
LO.Modal.Entailment.multibox_duality_mp'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢ □^[n]φ)
:
@[simp]
theorem
LO.Modal.Entailment.multibox_duality_mpr!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
:
theorem
LO.Modal.Entailment.multibox_duality_mpr'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{n : ℕ}
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢ ∼◇^[n](∼φ))
:
def
LO.Modal.Entailment.boxDuality
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
Instances For
@[simp]
theorem
LO.Modal.Entailment.box_duality!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
@[simp]
theorem
LO.Modal.Entailment.boxDuality_mp!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.boxDuality_mp'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢! □φ)
:
Instances For
theorem
LO.Modal.Entailment.boxDuality_mp'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢ □φ)
:
@[simp]
theorem
LO.Modal.Entailment.boxDuality_mpr!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
:
def
LO.Modal.Entailment.boxDuality_mpr'
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢! ∼◇(∼φ))
:
Instances For
theorem
LO.Modal.Entailment.boxDuality_mpr'!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.E 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢ ∼◇(∼φ))
: