Documentation

Foundation.Modal.Entailment.E

def LO.Entailment.C_replace {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.Minimal 𝓒] {Οˆβ‚ φ₁ Ο†β‚‚ Οˆβ‚‚ : F} [HasAxiomImply₁ 𝓒] [HasAxiomImplyβ‚‚ 𝓒] (h₁ : 𝓒 ⊒! Οˆβ‚ ➝ φ₁) (hβ‚‚ : 𝓒 ⊒! Ο†β‚‚ ➝ Οˆβ‚‚) :
𝓒 ⊒! φ₁ ➝ Ο†β‚‚ β†’ 𝓒 ⊒! Οˆβ‚ ➝ Οˆβ‚‚
Equations
Instances For
    @[simp]
    theorem LO.Modal.Entailment.ELLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
    @[simp]
    theorem LO.Modal.Entailment.ILLNN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
    theorem LO.Modal.Entailment.box_dni! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :

    Alias of LO.Modal.Entailment.ILLNN.

    @[simp]
    theorem LO.Modal.Entailment.ILNNL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
    theorem LO.Modal.Entailment.box_dne! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :

    Alias of LO.Modal.Entailment.ILNNL.

    def LO.Modal.Entailment.box_dne' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒! β–‘(βˆΌβˆΌΟ†)) :
    𝓒 ⊒! β–‘Ο†
    Equations
    Instances For
      theorem LO.Modal.Entailment.box_dne'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ β–‘(βˆΌβˆΌΟ†)) :
      𝓒 ⊒ β–‘Ο†
      @[simp]
      theorem LO.Modal.Entailment.INMNL {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
      @[simp]
      theorem LO.Modal.Entailment.INLMN {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
      def LO.Modal.Entailment.multiDiaDuality {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem LO.Modal.Entailment.multidia_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
        @[simp]
        theorem LO.Modal.Entailment.multidia_duality!_mp {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
        @[simp]
        theorem LO.Modal.Entailment.dia_duality!_mp {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
        @[simp]
        theorem LO.Modal.Entailment.multidia_duality!_mpr {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
        @[simp]
        theorem LO.Modal.Entailment.dia_duality!_mpr {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
        theorem LO.Modal.Entailment.dia_duality'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} :
        𝓒 ⊒ β—‡Ο† ↔ 𝓒 ⊒ βˆΌβ–‘(βˆΌΟ†)
        theorem LO.Modal.Entailment.multidia_duality'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
        𝓒 ⊒ β—‡^[n]Ο† ↔ 𝓒 ⊒ βˆΌβ–‘^[n](βˆΌΟ†)
        def LO.Modal.Entailment.multiboxDuality {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem LO.Modal.Entailment.multibox_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          @[simp]
          theorem LO.Modal.Entailment.multibox_duality_mp! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          theorem LO.Modal.Entailment.multibox_duality_mp'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ β–‘^[n]Ο†) :
          @[simp]
          theorem LO.Modal.Entailment.multibox_duality_mpr! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] :
          theorem LO.Modal.Entailment.multibox_duality_mpr'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {n : β„•} {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ βˆΌβ—‡^[n](βˆΌΟ†)) :
          𝓒 ⊒ β–‘^[n]Ο†
          @[simp]
          theorem LO.Modal.Entailment.box_duality! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
          @[simp]
          theorem LO.Modal.Entailment.boxDuality_mp! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
          def LO.Modal.Entailment.boxDuality_mp' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒! β–‘Ο†) :
          Equations
          Instances For
            theorem LO.Modal.Entailment.boxDuality_mp'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ β–‘Ο†) :
            𝓒 ⊒ βˆΌβ—‡(βˆΌΟ†)
            @[simp]
            theorem LO.Modal.Entailment.boxDuality_mpr! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] :
            def LO.Modal.Entailment.boxDuality_mpr' {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒! βˆΌβ—‡(βˆΌΟ†)) :
            𝓒 ⊒! β–‘Ο†
            Equations
            Instances For
              theorem LO.Modal.Entailment.boxDuality_mpr'! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] (h : 𝓒 ⊒ βˆΌβ—‡(βˆΌΟ†)) :
              𝓒 ⊒ β–‘Ο†
              instance LO.Modal.Entailment.HasAxiomFour.of_dual {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] [DecidableEq F] (h : (Ο† : F) β†’ 𝓒 ⊒! β—‡β—‡Ο† ➝ β—‡Ο†) :
              HasAxiomFour 𝓒
              Equations
              • One or more equations did not get rendered due to their size.
              @[simp]
              theorem LO.Modal.Entailment.axiomFourDual {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] [HasAxiomFour 𝓒] :
              𝓒 ⊒ β—‡β—‡Ο† ➝ β—‡Ο†
              def LO.Modal.Entailment.axiomFiveDual! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] [HasAxiomFive 𝓒] :
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem LO.Modal.Entailment.axiomFiveDual {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] [HasAxiomFive 𝓒] :
                @[simp]
                theorem LO.Modal.Entailment.axiomTDual {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment F S] {𝓒 : S} [Entailment.E 𝓒] {Ο† : F} [DecidableEq F] [HasAxiomT 𝓒] :
                𝓒 ⊒ Ο† ➝ β—‡Ο†