instance
instIsTransOfIsGeacheanMkOfNatNat
{α : Type u_1}
{R : Rel α α}
[IsGeachean { i := 0, j := 2, m := 1, n := 0 } α R]
:
IsTrans α R
instance
instIsGeacheanMkOfNatNatOfIsTrans
{α : Type u_1}
{R : Rel α α}
[IsTrans α R]
:
IsGeachean { i := 0, j := 2, m := 1, n := 0 } α R
instance
instIsReflOfIsGeacheanMkOfNatNat
{α : Type u_1}
{R : Rel α α}
[IsGeachean { i := 0, j := 0, m := 1, n := 0 } α R]
:
IsRefl α R
instance
instIsGeacheanMkOfNatNatOfIsRefl
{α : Type u_1}
{R : Rel α α}
[IsRefl α R]
:
IsGeachean { i := 0, j := 0, m := 1, n := 0 } α R
instance
instIsSymmOfIsGeacheanMkOfNatNat
{α : Type u_1}
{R : Rel α α}
[IsGeachean { i := 0, j := 1, m := 0, n := 1 } α R]
:
IsSymm α R
instance
instIsGeacheanMkOfNatNatOfIsSymm
{α : Type u_1}
{R : Rel α α}
[IsSymm α R]
:
IsGeachean { i := 0, j := 1, m := 0, n := 1 } α R
instance
instIsSerialOfIsGeacheanMkOfNatNat
{α : Type u_1}
{R : Rel α α}
[IsGeachean { i := 0, j := 0, m := 1, n := 1 } α R]
:
IsSerial α R
instance
instIsGeacheanMkOfNatNatOfIsSerial
{α : Type u_1}
{R : Rel α α}
[IsSerial α R]
:
IsGeachean { i := 0, j := 0, m := 1, n := 1 } α R
instance
instIsEuclideanOfIsGeacheanMkOfNatNat
{α : Type u_1}
{R : Rel α α}
[IsGeachean { i := 1, j := 1, m := 0, n := 1 } α R]
:
IsEuclidean α R
instance
instIsGeacheanMkOfNatNatOfIsEuclidean
{α : Type u_1}
{R : Rel α α}
[IsEuclidean α R]
:
IsGeachean { i := 1, j := 1, m := 0, n := 1 } α R
instance
instIsConfluentOfIsGeacheanMkOfNatNat
{α : Type u_1}
{R : Rel α α}
[IsGeachean { i := 1, j := 1, m := 1, n := 1 } α R]
:
IsConfluent α R
instance
instIsGeacheanMkOfNatNatOfIsConfluent
{α : Type u_1}
{R : Rel α α}
[IsConfluent α R]
:
IsGeachean { i := 1, j := 1, m := 1, n := 1 } α R
instance
instIsCoreflexiveOfIsGeacheanMkOfNatNat
{α : Type u_1}
{R : Rel α α}
[IsGeachean { i := 0, j := 1, m := 0, n := 0 } α R]
:
IsCoreflexive α R
instance
instIsGeacheanMkOfNatNatOfIsCoreflexive
{α : Type u_1}
{R : Rel α α}
[IsCoreflexive α R]
:
IsGeachean { i := 0, j := 1, m := 0, n := 0 } α R
Equations
- MultiGeachean G R = ∀ g ∈ G, Geachean g R