Documentation

Foundation.Modal.Geachean

structure Geachean.Taple :
Instances For
    def Geachean {α : Type u_1} (t : Geachean.Taple) (R : Rel α α) :
    Equations
    Instances For
      theorem Geachean.serial_def {α : Type u_1} {rel : Rel α α} :
      Serial rel Geachean { i := 0, j := 0, m := 1, n := 1 } rel
      theorem Geachean.reflexive_def {α : Type u_1} {rel : Rel α α} :
      Reflexive rel Geachean { i := 0, j := 0, m := 1, n := 0 } rel
      theorem Geachean.symmetric_def {α : Type u_1} {rel : Rel α α} :
      Symmetric rel Geachean { i := 0, j := 1, m := 0, n := 1 } rel
      theorem Geachean.transitive_def {α : Type u_1} {rel : Rel α α} :
      Transitive rel Geachean { i := 0, j := 2, m := 1, n := 0 } rel
      theorem Geachean.euclidean_def {α : Type u_1} {rel : Rel α α} :
      Euclidean rel Geachean { i := 1, j := 1, m := 0, n := 1 } rel
      theorem Geachean.confluent_def {α : Type u_1} {rel : Rel α α} :
      Confluent rel Geachean { i := 1, j := 1, m := 1, n := 1 } rel
      theorem Geachean.coreflexive_def {α : Type u_1} {rel : Rel α α} :
      Coreflexive rel Geachean { i := 0, j := 1, m := 0, n := 0 } rel
      theorem Geachean.functional_def {α : Type u_1} {rel : Rel α α} :
      Functional rel Geachean { i := 1, j := 1, m := 0, n := 0 } rel
      theorem Geachean.dense_def {α : Type u_1} {rel : Rel α α} :
      Dense rel Geachean { i := 0, j := 1, m := 2, n := 0 } rel
      @[simp]
      theorem Geachean.satisfies_eq {α : Type u_1} {t : Taple} :
      Geachean t fun (x1 x2 : α) => x1 = x2
      class IsGeachean (g : Geachean.Taple) (α : Type u_1) (R : Rel α α) :
      Instances
        instance instIsTransOfIsGeacheanMkOfNatNat {α : Type u_1} {R : Rel α α} [IsGeachean { i := 0, j := 2, m := 1, n := 0 } α R] :
        IsTrans α R
        instance instIsGeacheanMkOfNatNatOfIsTrans {α : Type u_1} {R : Rel α α} [IsTrans α R] :
        IsGeachean { i := 0, j := 2, m := 1, n := 0 } α R
        instance instIsReflOfIsGeacheanMkOfNatNat {α : Type u_1} {R : Rel α α} [IsGeachean { i := 0, j := 0, m := 1, n := 0 } α R] :
        IsRefl α R
        instance instIsGeacheanMkOfNatNatOfIsRefl {α : Type u_1} {R : Rel α α} [IsRefl α R] :
        IsGeachean { i := 0, j := 0, m := 1, n := 0 } α R
        instance instIsSymmOfIsGeacheanMkOfNatNat {α : Type u_1} {R : Rel α α} [IsGeachean { i := 0, j := 1, m := 0, n := 1 } α R] :
        IsSymm α R
        instance instIsGeacheanMkOfNatNatOfIsSymm {α : Type u_1} {R : Rel α α} [IsSymm α R] :
        IsGeachean { i := 0, j := 1, m := 0, n := 1 } α R
        instance instIsSerialOfIsGeacheanMkOfNatNat {α : Type u_1} {R : Rel α α} [IsGeachean { i := 0, j := 0, m := 1, n := 1 } α R] :
        instance instIsGeacheanMkOfNatNatOfIsSerial {α : Type u_1} {R : Rel α α} [IsSerial α R] :
        IsGeachean { i := 0, j := 0, m := 1, n := 1 } α R
        instance instIsEuclideanOfIsGeacheanMkOfNatNat {α : Type u_1} {R : Rel α α} [IsGeachean { i := 1, j := 1, m := 0, n := 1 } α R] :
        instance instIsGeacheanMkOfNatNatOfIsEuclidean {α : Type u_1} {R : Rel α α} [IsEuclidean α R] :
        IsGeachean { i := 1, j := 1, m := 0, n := 1 } α R
        instance instIsConfluentOfIsGeacheanMkOfNatNat {α : Type u_1} {R : Rel α α} [IsGeachean { i := 1, j := 1, m := 1, n := 1 } α R] :
        instance instIsGeacheanMkOfNatNatOfIsConfluent {α : Type u_1} {R : Rel α α} [IsConfluent α R] :
        IsGeachean { i := 1, j := 1, m := 1, n := 1 } α R
        instance instIsCoreflexiveOfIsGeacheanMkOfNatNat {α : Type u_1} {R : Rel α α} [IsGeachean { i := 0, j := 1, m := 0, n := 0 } α R] :
        instance instIsGeacheanMkOfNatNatOfIsCoreflexive {α : Type u_1} {R : Rel α α} [IsCoreflexive α R] :
        IsGeachean { i := 0, j := 1, m := 0, n := 0 } α R
        def MultiGeachean {α : Type u_1} (G : Set Geachean.Taple) (R : Rel α α) :
        Equations
        Instances For