- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomTFormulaOfHasT
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hT : H.HasT]
:
Equations
- LO.Modal.Hilbert.instHasAxiomTFormulaOfHasT = { T := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomBFormulaOfHasB
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hB : H.HasB]
:
Equations
- LO.Modal.Hilbert.instHasAxiomBFormulaOfHasB = { B := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomDFormulaOfHasD
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hD : H.HasD]
:
Equations
- LO.Modal.Hilbert.instHasAxiomDFormulaOfHasD = { D := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomFourFormulaOfHasFour
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hFour : H.HasFour]
:
Equations
- LO.Modal.Hilbert.instHasAxiomFourFormulaOfHasFour = { Four := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomFiveFormulaOfHasFive
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hFive : H.HasFive]
:
Equations
- LO.Modal.Hilbert.instHasAxiomFiveFormulaOfHasFive = { Five := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomPoint2FormulaOfHasPoint2
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hPoint2 : H.HasPoint2]
:
Equations
- LO.Modal.Hilbert.instHasAxiomPoint2FormulaOfHasPoint2 = { Point2 := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomWeakPoint2FormulaOfHasWeakPoint2
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDotWeak2 : H.HasWeakPoint2]
:
Equations
- LO.Modal.Hilbert.instHasAxiomWeakPoint2FormulaOfHasWeakPoint2 = { WeakPoint2 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomPoint3FormulaOfHasPoint3
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hPoint3 : H.HasPoint3]
:
Equations
- LO.Modal.Hilbert.instHasAxiomPoint3FormulaOfHasPoint3 = { Point3 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomWeakPoint3FormulaOfHasWeakPoint3
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDotWeak3 : H.HasWeakPoint3]
:
Equations
- LO.Modal.Hilbert.instHasAxiomWeakPoint3FormulaOfHasWeakPoint3 = { WeakPoint3 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomLFormulaOfHasL
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hL : H.HasL]
:
Equations
- LO.Modal.Hilbert.instHasAxiomLFormulaOfHasL = { L := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomGrzFormulaOfHasGrz
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hGrz : H.HasGrz]
:
Equations
- LO.Modal.Hilbert.instHasAxiomGrzFormulaOfHasGrz = { Grz := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomTcFormulaOfHasTc
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hTc : H.HasTc]
:
Equations
- LO.Modal.Hilbert.instHasAxiomTcFormulaOfHasTc = { Tc := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomVerFormulaOfDecidableEqOfHasVer
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hVer : H.HasVer]
:
Equations
- LO.Modal.Hilbert.instHasAxiomVerFormulaOfDecidableEqOfHasVer = { Ver := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomHFormulaOfHasH
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hH : H.HasH]
:
Equations
- LO.Modal.Hilbert.instHasAxiomHFormulaOfHasH = { H := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomZFormulaOfHasZ
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hZ : H.HasZ]
:
Equations
- LO.Modal.Hilbert.instHasAxiomZFormulaOfHasZ = { Z := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomMFormulaOfHasM
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hM : H.HasM]
:
Equations
- LO.Modal.Hilbert.instHasAxiomMFormulaOfHasM = { M := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomMkFormulaOfHasMk
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[H.HasMk]
:
Equations
- LO.Modal.Hilbert.instHasAxiomMkFormulaOfHasMk = { Mk := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KT = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.T (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKT = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKT._proof_20 }
Equations
- LO.Modal.Hilbert.instHasTNatKT = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatKT._proof_21 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KD = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.D (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKD._proof_22 }
Equations
- LO.Modal.Hilbert.instHasDNatKD = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD._proof_23 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KB = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.B (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKB = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKB._proof_24 }
Equations
- LO.Modal.Hilbert.instHasBNatKB = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKB._proof_25 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKDB = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKDB._proof_26 }
Equations
- LO.Modal.Hilbert.instHasDNatKDB = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKDB._proof_27 }
Equations
- LO.Modal.Hilbert.instHasBNatKDB = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKDB._proof_28 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKTB = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKTB._proof_29 }
Equations
- LO.Modal.Hilbert.instHasTNatKTB = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatKTB._proof_30 }
Equations
- LO.Modal.Hilbert.instHasBNatKTB = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKTB._proof_31 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KM = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.M (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKM = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKM._proof_32 }
Equations
- LO.Modal.Hilbert.instHasMNatKM = { p := 0, mem_M := LO.Modal.Hilbert.instHasMNatKM._proof_33 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.K4 = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Four (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatK4._proof_34 }
Equations
- LO.Modal.Hilbert.instHasFourNatK4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK4._proof_35 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK4Point1 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatK4Point1._proof_36 }
Equations
- LO.Modal.Hilbert.instHasFourNatK4Point1 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK4Point1._proof_37 }
Equations
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
LO.Modal.Hilbert.instK4Point1NatFormulaOfWeakerThanK4Point1
{H : Hilbert ℕ}
[Hilbert.K4Point1 ⪯ H]
:
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK4Point2 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatK4Point2._proof_42 }
Equations
- LO.Modal.Hilbert.instHasFourNatK4Point2 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK4Point2._proof_43 }
Equations
- LO.Modal.Hilbert.instHasWeakPoint2NatK4Point2 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_WeakPoint2 := LO.Modal.Hilbert.instHasWeakPoint2NatK4Point2._proof_44 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK4Point3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatK4Point3._proof_45 }
Equations
- LO.Modal.Hilbert.instHasFourNatK4Point3 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK4Point3._proof_46 }
Equations
- LO.Modal.Hilbert.instHasWeakPoint3NatK4Point3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_WeakPoint3 := LO.Modal.Hilbert.instHasWeakPoint3NatK4Point3._proof_47 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKT4B = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKT4B._proof_48 }
Equations
- LO.Modal.Hilbert.instHasTNatKT4B = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatKT4B._proof_49 }
Equations
- LO.Modal.Hilbert.instHasFourNatKT4B = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKT4B._proof_50 }
Equations
- LO.Modal.Hilbert.instHasBNatKT4B = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKT4B._proof_51 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK45 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatK45._proof_52 }
Equations
- LO.Modal.Hilbert.instHasFourNatK45 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK45._proof_53 }
Equations
- LO.Modal.Hilbert.instHasFiveNatK45 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatK45._proof_54 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKD4._proof_55 }
Equations
- LO.Modal.Hilbert.instHasDNatKD4 = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD4._proof_56 }
Equations
- LO.Modal.Hilbert.instHasFourNatKD4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKD4._proof_57 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKD5._proof_58 }
Equations
- LO.Modal.Hilbert.instHasDNatKD5 = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD5._proof_59 }
Equations
- LO.Modal.Hilbert.instHasFiveNatKD5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatKD5._proof_60 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD45 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKD45._proof_61 }
Equations
- LO.Modal.Hilbert.instHasDNatKD45 = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD45._proof_62 }
Equations
- LO.Modal.Hilbert.instHasFourNatKD45 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKD45._proof_63 }
Equations
- LO.Modal.Hilbert.instHasFiveNatKD45 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatKD45._proof_64 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKB4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKB4._proof_65 }
Equations
- LO.Modal.Hilbert.instHasBNatKB4 = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKB4._proof_66 }
Equations
- LO.Modal.Hilbert.instHasFourNatKB4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKB4._proof_67 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKB5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKB5._proof_68 }
Equations
- LO.Modal.Hilbert.instHasBNatKB5 = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKB5._proof_69 }
Equations
- LO.Modal.Hilbert.instHasFiveNatKB5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatKB5._proof_70 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatS4._proof_71 }
Equations
- LO.Modal.Hilbert.instHasTNatS4 = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatS4._proof_72 }
Equations
- LO.Modal.Hilbert.instHasFourNatS4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatS4._proof_73 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS4Point1 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatS4Point1._proof_74 }
Equations
Equations
- LO.Modal.Hilbert.instHasFourNatS4Point1 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatS4Point1._proof_76 }
Equations
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS4Point2 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatS4Point2._proof_78 }
Equations
Equations
- LO.Modal.Hilbert.instHasFourNatS4Point2 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatS4Point2._proof_80 }
Equations
- LO.Modal.Hilbert.instHasPoint2NatS4Point2 = { p := 0, mem_Point2 := LO.Modal.Hilbert.instHasPoint2NatS4Point2._proof_81 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS4Point3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatS4Point3._proof_82 }
Equations
Equations
- LO.Modal.Hilbert.instHasFourNatS4Point3 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatS4Point3._proof_84 }
Equations
- LO.Modal.Hilbert.instHasPoint3NatS4Point3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_Point3 := LO.Modal.Hilbert.instHasPoint3NatS4Point3._proof_85 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.K5 = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Five (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatK5._proof_86 }
Equations
- LO.Modal.Hilbert.instHasFiveNatK5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatK5._proof_87 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatS5._proof_88 }
Equations
- LO.Modal.Hilbert.instHasTNatS5 = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatS5._proof_89 }
Equations
- LO.Modal.Hilbert.instHasFiveNatS5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatS5._proof_90 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.GL = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.L (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGL = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatGL._proof_91 }
Equations
- LO.Modal.Hilbert.instHasLNatGL = { p := 0, mem_L := LO.Modal.Hilbert.instHasLNatGL._proof_92 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGLPoint3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatGLPoint3._proof_93 }
Equations
Equations
- LO.Modal.Hilbert.instHasWeakPoint3NatGLPoint3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_WeakPoint3 := LO.Modal.Hilbert.instHasWeakPoint3NatGLPoint3._proof_95 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KH = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.H (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKH = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKH._proof_96 }
Equations
- LO.Modal.Hilbert.instHasHNatKH = { p := 0, mem_H := LO.Modal.Hilbert.instHasHNatKH._proof_97 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.Grz = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Grz (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGrz = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatGrz._proof_98 }
Equations
- LO.Modal.Hilbert.instHasGrzNatGrz = { p := 0, mem_Grz := LO.Modal.Hilbert.instHasGrzNatGrz._proof_99 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGrzPoint2 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatGrzPoint2._proof_100 }
Equations
- LO.Modal.Hilbert.instHasGrzNatGrzPoint2 = { p := 0, mem_Grz := LO.Modal.Hilbert.instHasGrzNatGrzPoint2._proof_101 }
Equations
- LO.Modal.Hilbert.instHasPoint2NatGrzPoint2 = { p := 0, mem_Point2 := LO.Modal.Hilbert.instHasPoint2NatGrzPoint2._proof_102 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGrzPoint3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatGrzPoint3._proof_103 }
Equations
- LO.Modal.Hilbert.instHasGrzNatGrzPoint3 = { p := 0, mem_Grz := LO.Modal.Hilbert.instHasGrzNatGrzPoint3._proof_104 }
Equations
- LO.Modal.Hilbert.instHasPoint3NatGrzPoint3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_Point3 := LO.Modal.Hilbert.instHasPoint3NatGrzPoint3._proof_105 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.Ver = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Ver (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatVer = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatVer._proof_106 }
Equations
- LO.Modal.Hilbert.instHasVerNatVer = { p := 0, mem_Ver := LO.Modal.Hilbert.instHasVerNatVer._proof_107 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatTriv = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatTriv._proof_108 }
Equations
- LO.Modal.Hilbert.instHasTNatTriv = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatTriv._proof_109 }
Equations
- LO.Modal.Hilbert.instHasTcNatTriv = { p := 0, mem_Tc := LO.Modal.Hilbert.instHasTcNatTriv._proof_110 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KTc = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Tc (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKTc = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKTc._proof_111 }
Equations
- LO.Modal.Hilbert.instHasTcNatKTc = { p := 0, mem_Tc := LO.Modal.Hilbert.instHasTcNatKTc._proof_112 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD4Point3Z = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKD4Point3Z._proof_113 }
Equations
Equations
- LO.Modal.Hilbert.instHasFourNatKD4Point3Z = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKD4Point3Z._proof_115 }
Equations
- One or more equations did not get rendered due to their size.
Equations
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKTMk = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_K := LO.Modal.Hilbert.instHasKNatKTMk._proof_118 }
Equations
- LO.Modal.Hilbert.instHasTNatKTMk = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatKTMk._proof_119 }
Equations
- LO.Modal.Hilbert.instHasMkNatKTMk = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT._proof_19, mem_Mk := LO.Modal.Hilbert.instHasMkNatKTMk._proof_120 }
Equations
- One or more equations did not get rendered due to their size.