- p : α
Instances
- LO.Modal.Hilbert.KT.instHasTNat
- LO.Modal.Hilbert.KT4B.instHasTNat
- LO.Modal.Hilbert.KTB.instHasTNat
- LO.Modal.Hilbert.KTMk.instHasTNat
- LO.Modal.Hilbert.S4.instHasTNat
- LO.Modal.Hilbert.S4Point1.instHasTNat
- LO.Modal.Hilbert.S4Point2.instHasTNat
- LO.Modal.Hilbert.S4Point2Point1.instHasTNat
- LO.Modal.Hilbert.S4Point3.instHasTNat
- LO.Modal.Hilbert.S4Point4.instHasTNat
- LO.Modal.Hilbert.S5.instHasTNat
- LO.Modal.Hilbert.S5Grz.instHasTNat
- LO.Modal.Hilbert.Triv.instHasTNat
instance
LO.Modal.Hilbert.instHasAxiomTFormulaOfHasT
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hT : H.HasT]
:
Equations
- LO.Modal.Hilbert.instHasAxiomTFormulaOfHasT = { T := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomBFormulaOfHasB
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hB : H.HasB]
:
Equations
- LO.Modal.Hilbert.instHasAxiomBFormulaOfHasB = { B := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomDFormulaOfHasD
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hD : H.HasD]
:
Equations
- LO.Modal.Hilbert.instHasAxiomDFormulaOfHasD = { D := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
- LO.Modal.Hilbert.K4.instHasFourNat
- LO.Modal.Hilbert.K45.instHasFourNat
- LO.Modal.Hilbert.K4Point1.instHasFourNat
- LO.Modal.Hilbert.K4Point2.instHasFourNat
- LO.Modal.Hilbert.K4Point3.instHasFourNat
- LO.Modal.Hilbert.KB4.instHasFourNat
- LO.Modal.Hilbert.KD4.instHasFourNat
- LO.Modal.Hilbert.KD45.instHasFourNat
- LO.Modal.Hilbert.KD4Point3Z.instHasFourNat
- LO.Modal.Hilbert.KT4B.instHasFourNat
- LO.Modal.Hilbert.S4.instHasFourNat
- LO.Modal.Hilbert.S4Point1.instHasFourNat
- LO.Modal.Hilbert.S4Point2.instHasFourNat
- LO.Modal.Hilbert.S4Point2Point1.instHasFourNat
- LO.Modal.Hilbert.S4Point3.instHasFourNat
- LO.Modal.Hilbert.S4Point4.instHasFourNat
- LO.Modal.Hilbert.instHasFourNatK4H
instance
LO.Modal.Hilbert.instHasAxiomFourFormulaOfHasFour
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hFour : H.HasFour]
:
Equations
- LO.Modal.Hilbert.instHasAxiomFourFormulaOfHasFour = { Four := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomFiveFormulaOfHasFive
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hFive : H.HasFive]
:
Equations
- LO.Modal.Hilbert.instHasAxiomFiveFormulaOfHasFive = { Five := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomPoint2FormulaOfHasPoint2
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hPoint2 : H.HasPoint2]
:
Equations
- LO.Modal.Hilbert.instHasAxiomPoint2FormulaOfHasPoint2 = { Point2 := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
instance
LO.Modal.Hilbert.instHasAxiomWeakPoint2FormulaOfHasWeakPoint2
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDotWeak2 : H.HasWeakPoint2]
:
Equations
- LO.Modal.Hilbert.instHasAxiomWeakPoint2FormulaOfHasWeakPoint2 = { WeakPoint2 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
instance
LO.Modal.Hilbert.instHasAxiomPoint3FormulaOfHasPoint3
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hPoint3 : H.HasPoint3]
:
Equations
- LO.Modal.Hilbert.instHasAxiomPoint3FormulaOfHasPoint3 = { Point3 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
instance
LO.Modal.Hilbert.instHasAxiomWeakPoint3FormulaOfHasWeakPoint3
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDotWeak3 : H.HasWeakPoint3]
:
Equations
- LO.Modal.Hilbert.instHasAxiomWeakPoint3FormulaOfHasWeakPoint3 = { WeakPoint3 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomPoint4FormulaOfHasPoint4
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[H.HasPoint4]
:
Equations
- LO.Modal.Hilbert.instHasAxiomPoint4FormulaOfHasPoint4 = { Point4 := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomLFormulaOfHasL
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hL : H.HasL]
:
Equations
- LO.Modal.Hilbert.instHasAxiomLFormulaOfHasL = { L := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomGrzFormulaOfHasGrz
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hGrz : H.HasGrz]
:
Equations
- LO.Modal.Hilbert.instHasAxiomGrzFormulaOfHasGrz = { Grz := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomTcFormulaOfHasTc
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hTc : H.HasTc]
:
Equations
- LO.Modal.Hilbert.instHasAxiomTcFormulaOfHasTc = { Tc := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomVerFormulaOfDecidableEqOfHasVer
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hVer : H.HasVer]
:
Equations
- LO.Modal.Hilbert.instHasAxiomVerFormulaOfDecidableEqOfHasVer = { Ver := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomHFormulaOfHasH
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hH : H.HasH]
:
Equations
- LO.Modal.Hilbert.instHasAxiomHFormulaOfHasH = { H := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomZFormulaOfHasZ
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hZ : H.HasZ]
:
Equations
- LO.Modal.Hilbert.instHasAxiomZFormulaOfHasZ = { Z := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
instance
LO.Modal.Hilbert.instHasAxiomMFormulaOfHasM
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hM : H.HasM]
:
Equations
- LO.Modal.Hilbert.instHasAxiomMFormulaOfHasM = { M := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomMkFormulaOfHasMk
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[H.HasMk]
:
Equations
- LO.Modal.Hilbert.instHasAxiomMkFormulaOfHasMk = { Mk := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomGeachFormulaOfHasGeach
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
{g : Axioms.Geach.Taple}
[HasGeach g H]
:
Equations
- LO.Modal.Hilbert.instHasAxiomGeachFormulaOfHasGeach = { Geach := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KT.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KT.instHasKNat._proof_2 }
Equations
- LO.Modal.Hilbert.KT.instHasTNat = { p := 0, mem_T := LO.Modal.Hilbert.KT.instHasTNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KD.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KD.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD.instHasDNat = { p := 0, mem_D := LO.Modal.Hilbert.KD.instHasDNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KB.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KB.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KB.instHasBNat = { p := 0, mem_B := LO.Modal.Hilbert.KB.instHasBNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KDB.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KDB.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KDB.instHasDNat = { p := 0, mem_D := LO.Modal.Hilbert.KDB.instHasDNat._proof_1 }
Equations
- LO.Modal.Hilbert.KDB.instHasBNat = { p := 0, mem_B := LO.Modal.Hilbert.KDB.instHasBNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.KTB.Kripke.canonical
- LO.Modal.Hilbert.KTB.Kripke.complete
- LO.Modal.Hilbert.KTB.Kripke.consistent
- LO.Modal.Hilbert.KTB.Kripke.finite_complete
- LO.Modal.Hilbert.KTB.Kripke.sound
- LO.Modal.Hilbert.KTB.instHasBNat
- LO.Modal.Hilbert.KTB.instHasKNat
- LO.Modal.Hilbert.KTB.instHasTNat
- LO.Modal.Hilbert.KTB.instKTBNatFormula
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KTB.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KTB.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KTB.instHasTNat = { p := 0, mem_T := LO.Modal.Hilbert.KTB.instHasTNat._proof_1 }
Equations
- LO.Modal.Hilbert.KTB.instHasBNat = { p := 0, mem_B := LO.Modal.Hilbert.KTB.instHasBNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KM.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KM.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KM.instHasMNat = { p := 0, mem_M := LO.Modal.Hilbert.KM.instHasMNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Instances For
- LO.Modal.Hilbert.K4.Kripke.canonical
- LO.Modal.Hilbert.K4.Kripke.complete
- LO.Modal.Hilbert.K4.Kripke.consistent
- LO.Modal.Hilbert.K4.Kripke.finite_complete
- LO.Modal.Hilbert.K4.Kripke.sound
- LO.Modal.Hilbert.K4.instHasFourNat
- LO.Modal.Hilbert.K4.instHasKNat
- LO.Modal.Hilbert.K4.instK4NatFormula
- LO.Modal.Hilbert.K4_weakerThan_S4
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.K4.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.K4.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.K4.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.K4.instHasFourNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.K4Point1.Kripke.canonical
- LO.Modal.Hilbert.K4Point1.Kripke.complete
- LO.Modal.Hilbert.K4Point1.Kripke.consistent
- LO.Modal.Hilbert.K4Point1.Kripke.sound
- LO.Modal.Hilbert.K4Point1.instHasFourNat
- LO.Modal.Hilbert.K4Point1.instHasKNat
- LO.Modal.Hilbert.K4Point1.instHasMNat
- LO.Modal.Hilbert.K4Point1.instK4Point1NatFormula
- LO.Modal.Hilbert.K_weakerThan_K4Point1
- LO.Modal.Hilbert.S4Point1.instWeakerThanFormulaNatK4Point1
- LO.Modal.Hilbert.S4Point2Point1.instWeakerThanFormulaNatK4Point1
@[reducible, inline]
Equations
- LO.Modal.Hilbert.K4Point1.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.K4Point1.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.K4Point1.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.K4Point1.instHasFourNat._proof_1 }
Equations
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
LO.Modal.Hilbert.K4Point1.instK4Point1NatFormulaOfWeakerThan
{H : Hilbert ℕ}
[Hilbert.K4Point1 ⪯ H]
:
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.K4Point2.Kripke.canonical
- LO.Modal.Hilbert.K4Point2.Kripke.complete
- LO.Modal.Hilbert.K4Point2.Kripke.consistent
- LO.Modal.Hilbert.K4Point2.Kripke.sound
- LO.Modal.Hilbert.K4Point2.instHasFourNat
- LO.Modal.Hilbert.K4Point2.instHasKNat
- LO.Modal.Hilbert.K4Point2.instHasWeakPoint2Nat
- LO.Modal.Hilbert.K4Point2.instK4Point2NatFormula
@[reducible, inline]
Equations
- LO.Modal.Hilbert.K4Point2.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.K4Point2.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.K4Point2.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.K4Point2.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.K4Point2.instHasWeakPoint2Nat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_WeakPoint2 := LO.Modal.Hilbert.K4Point2.instHasWeakPoint2Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.K4Point3.Kripke.canonical
- LO.Modal.Hilbert.K4Point3.Kripke.complete
- LO.Modal.Hilbert.K4Point3.Kripke.consistent
- LO.Modal.Hilbert.K4Point3.Kripke.sound
- LO.Modal.Hilbert.K4Point3.instHasFourNat
- LO.Modal.Hilbert.K4Point3.instHasKNat
- LO.Modal.Hilbert.K4Point3.instHasWeakPoint3Nat
- LO.Modal.Hilbert.K4Point3.instK4Point3NatFormula
@[reducible, inline]
Equations
- LO.Modal.Hilbert.K4Point3.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.K4Point3.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.K4Point3.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.K4Point3.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.K4Point3.instHasWeakPoint3Nat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_WeakPoint3 := LO.Modal.Hilbert.K4Point3.instHasWeakPoint3Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.KT4B.Kripke.canonical
- LO.Modal.Hilbert.KT4B.Kripke.complete
- LO.Modal.Hilbert.KT4B.Kripke.consistent
- LO.Modal.Hilbert.KT4B.Kripke.finite_complete
- LO.Modal.Hilbert.KT4B.Kripke.sound
- LO.Modal.Hilbert.KT4B.instHasBNat
- LO.Modal.Hilbert.KT4B.instHasFourNat
- LO.Modal.Hilbert.KT4B.instHasKNat
- LO.Modal.Hilbert.KT4B.instHasTNat
- LO.Modal.Hilbert.KT4B.instKT4BNatFormula
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KT4B.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KT4B.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KT4B.instHasTNat = { p := 0, mem_T := LO.Modal.Hilbert.KT4B.instHasTNat._proof_1 }
Equations
- LO.Modal.Hilbert.KT4B.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.KT4B.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.KT4B.instHasBNat = { p := 0, mem_B := LO.Modal.Hilbert.KT4B.instHasBNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.K45.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.K45.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.K45.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.K45.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.K45.instHasFiveNat = { p := 0, mem_Five := LO.Modal.Hilbert.K45.instHasFiveNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KD4.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KD4.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD4.instHasDNat = { p := 0, mem_D := LO.Modal.Hilbert.KD4.instHasDNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD4.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.KD4.instHasFourNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KD5.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KD5.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD5.instHasDNat = { p := 0, mem_D := LO.Modal.Hilbert.KD5.instHasDNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD5.instHasFiveNat = { p := 0, mem_Five := LO.Modal.Hilbert.KD5.instHasFiveNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.KD45.Kripke.canonical
- LO.Modal.Hilbert.KD45.Kripke.complete
- LO.Modal.Hilbert.KD45.Kripke.consistent
- LO.Modal.Hilbert.KD45.Kripke.sound
- LO.Modal.Hilbert.KD45.instHasDNat
- LO.Modal.Hilbert.KD45.instHasFiveNat
- LO.Modal.Hilbert.KD45.instHasFourNat
- LO.Modal.Hilbert.KD45.instHasKNat
- LO.Modal.Hilbert.KD45.instKD45NatFormula
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KD45.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KD45.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD45.instHasDNat = { p := 0, mem_D := LO.Modal.Hilbert.KD45.instHasDNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD45.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.KD45.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.KD45.instHasFiveNat = { p := 0, mem_Five := LO.Modal.Hilbert.KD45.instHasFiveNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KB4.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KB4.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KB4.instHasBNat = { p := 0, mem_B := LO.Modal.Hilbert.KB4.instHasBNat._proof_1 }
Equations
- LO.Modal.Hilbert.KB4.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.KB4.instHasFourNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KB5.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KB5.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KB5.instHasBNat = { p := 0, mem_B := LO.Modal.Hilbert.KB5.instHasBNat._proof_1 }
Equations
- LO.Modal.Hilbert.KB5.instHasFiveNat = { p := 0, mem_Five := LO.Modal.Hilbert.KB5.instHasFiveNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.K4_weakerThan_S4
- LO.Modal.Hilbert.S4.Kripke.canonical
- LO.Modal.Hilbert.S4.Kripke.complete
- LO.Modal.Hilbert.S4.Kripke.consistent
- LO.Modal.Hilbert.S4.Kripke.finiteComplete
- LO.Modal.Hilbert.S4.Kripke.sound
- LO.Modal.Hilbert.S4.instHasFourNat
- LO.Modal.Hilbert.S4.instHasKNat
- LO.Modal.Hilbert.S4.instHasTNat
- LO.Modal.Hilbert.S4.instS4NatFormula
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.S4.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.S4.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.S4.instHasTNat = { p := 0, mem_T := LO.Modal.Hilbert.S4.instHasTNat._proof_1 }
Equations
- LO.Modal.Hilbert.S4.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.S4.instHasFourNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.S4Point1.Kripke.canonical
- LO.Modal.Hilbert.S4Point1.Kripke.complete
- LO.Modal.Hilbert.S4Point1.Kripke.consistent
- LO.Modal.Hilbert.S4Point1.Kripke.sound
- LO.Modal.Hilbert.S4Point1.instHasFourNat
- LO.Modal.Hilbert.S4Point1.instHasKNat
- LO.Modal.Hilbert.S4Point1.instHasMNat
- LO.Modal.Hilbert.S4Point1.instHasTNat
- LO.Modal.Hilbert.S4Point1.instS4Point1NatFormula
- LO.Modal.Hilbert.S4Point1.instWeakerThanFormulaNatK4Point1
@[reducible, inline]
Equations
- LO.Modal.Hilbert.S4Point1.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.S4Point1.instHasKNat._proof_1 }
Equations
Equations
- LO.Modal.Hilbert.S4Point1.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.S4Point1.instHasFourNat._proof_1 }
Equations
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.S4Point2.Kripke.canonical
- LO.Modal.Hilbert.S4Point2.Kripke.complete
- LO.Modal.Hilbert.S4Point2.Kripke.consistent
- LO.Modal.Hilbert.S4Point2.Kripke.finite_complete
- LO.Modal.Hilbert.S4Point2.Kripke.finite_sound
- LO.Modal.Hilbert.S4Point2.Kripke.sound
- LO.Modal.Hilbert.S4Point2.instHasFourNat
- LO.Modal.Hilbert.S4Point2.instHasKNat
- LO.Modal.Hilbert.S4Point2.instHasPoint2Nat
- LO.Modal.Hilbert.S4Point2.instHasTNat
- LO.Modal.Hilbert.S4Point2.instS4Point2NatFormula
@[reducible, inline]
Instances For
Equations
- LO.Modal.Hilbert.S4Point2.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.S4Point2.instHasKNat._proof_1 }
Equations
Equations
- LO.Modal.Hilbert.S4Point2.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.S4Point2.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.S4Point2.instHasPoint2Nat = { p := 0, mem_Point2 := LO.Modal.Hilbert.S4Point2.instHasPoint2Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.S4Point2Point1.Kripke.canonical
- LO.Modal.Hilbert.S4Point2Point1.Kripke.complete
- LO.Modal.Hilbert.S4Point2Point1.Kripke.consistent
- LO.Modal.Hilbert.S4Point2Point1.Kripke.sound
- LO.Modal.Hilbert.S4Point2Point1.instHasFourNat
- LO.Modal.Hilbert.S4Point2Point1.instHasKNat
- LO.Modal.Hilbert.S4Point2Point1.instHasMNat
- LO.Modal.Hilbert.S4Point2Point1.instHasPoint2Nat
- LO.Modal.Hilbert.S4Point2Point1.instHasTNat
- LO.Modal.Hilbert.S4Point2Point1.instS4Point2Point1NatFormula
- LO.Modal.Hilbert.S4Point2Point1.instWeakerThanFormulaNatK4Point1
@[reducible, inline]
- Sobociński's
K2
(Hudges & Cresswell 2007)
Equations
- LO.Modal.Hilbert.S4Point2Point1.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.S4Point2Point1.instHasKNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.S4Point3.Kripke.canonical
- LO.Modal.Hilbert.S4Point3.Kripke.complete
- LO.Modal.Hilbert.S4Point3.Kripke.consistent
- LO.Modal.Hilbert.S4Point3.Kripke.finite_complete
- LO.Modal.Hilbert.S4Point3.Kripke.finite_sound
- LO.Modal.Hilbert.S4Point3.Kripke.sound
- LO.Modal.Hilbert.S4Point3.instHasFourNat
- LO.Modal.Hilbert.S4Point3.instHasKNat
- LO.Modal.Hilbert.S4Point3.instHasPoint3Nat
- LO.Modal.Hilbert.S4Point3.instHasTNat
- LO.Modal.Hilbert.S4Point3.instS4Point3NatFormula
@[reducible, inline]
Instances For
Equations
- LO.Modal.Hilbert.S4Point3.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.S4Point3.instHasKNat._proof_1 }
Equations
Equations
- LO.Modal.Hilbert.S4Point3.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.S4Point3.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.S4Point3.instHasPoint3Nat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_Point3 := LO.Modal.Hilbert.S4Point3.instHasPoint3Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.S4Point4.Kripke.canonical
- LO.Modal.Hilbert.S4Point4.Kripke.complete
- LO.Modal.Hilbert.S4Point4.Kripke.consistent
- LO.Modal.Hilbert.S4Point4.Kripke.sound
- LO.Modal.Hilbert.S4Point4.instHasFourNat
- LO.Modal.Hilbert.S4Point4.instHasKNat
- LO.Modal.Hilbert.S4Point4.instHasPoint4Nat
- LO.Modal.Hilbert.S4Point4.instHasTNat
- LO.Modal.Hilbert.S4Point4.instS4Point4NatFormula
@[reducible, inline]
Equations
- LO.Modal.Hilbert.S4Point4.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.S4Point4.instHasKNat._proof_1 }
Equations
Equations
- LO.Modal.Hilbert.S4Point4.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.S4Point4.instHasFourNat._proof_1 }
Equations
- LO.Modal.Hilbert.S4Point4.instHasPoint4Nat = { p := 0, mem_Point4 := LO.Modal.Hilbert.S4Point4.instHasPoint4Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.K5.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.K5.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.K5.instHasFiveNat = { p := 0, mem_Five := LO.Modal.Hilbert.K5.instHasFiveNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.S5.Kripke.canonical
- LO.Modal.Hilbert.S5.Kripke.complete_refl_eucl
- LO.Modal.Hilbert.S5.Kripke.complete_universal
- LO.Modal.Hilbert.S5.Kripke.consistent
- LO.Modal.Hilbert.S5.Kripke.sound_refl_eucl
- LO.Modal.Hilbert.S5.Kripke.sound_universal
- LO.Modal.Hilbert.S5.instHasFiveNat
- LO.Modal.Hilbert.S5.instHasKNat
- LO.Modal.Hilbert.S5.instHasTNat
- LO.Modal.Hilbert.S5.instS5NatFormula
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.S5.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.S5.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.S5.instHasTNat = { p := 0, mem_T := LO.Modal.Hilbert.S5.instHasTNat._proof_1 }
Equations
- LO.Modal.Hilbert.S5.instHasFiveNat = { p := 0, mem_Five := LO.Modal.Hilbert.S5.instHasFiveNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Instances For
- LO.Modal.Hilbert.GL.Kripke.consistent
- LO.Modal.Hilbert.GL.Kripke.finiteComplete
- LO.Modal.Hilbert.GL.Kripke.finite_sound
- LO.Modal.Hilbert.GL.instGLNatFormula
- LO.Modal.Hilbert.GL.instHasKNat
- LO.Modal.Hilbert.GL.instHasLNat
- LO.Modal.Hilbert.GL.instUnnecessitationNatFormula
- LO.Modal.Logic.GL.instConsistentFormulaNatHilbertGL
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.GL.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.GL.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.GL.instHasLNat = { p := 0, mem_L := LO.Modal.Hilbert.GL.instHasLNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.GLPoint3.Kripke.consistent
- LO.Modal.Hilbert.GLPoint3.Kripke.finite_complete
- LO.Modal.Hilbert.GLPoint3.Kripke.finite_sound
- LO.Modal.Hilbert.GLPoint3.instGLPoint3NatFormula
- LO.Modal.Hilbert.GLPoint3.instHasKNat
- LO.Modal.Hilbert.GLPoint3.instHasLNat
- LO.Modal.Hilbert.GLPoint3.instHasWeakPoint3Nat
@[reducible, inline]
Instances For
Equations
- LO.Modal.Hilbert.GLPoint3.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.GLPoint3.instHasKNat._proof_1 }
Equations
Equations
- LO.Modal.Hilbert.GLPoint3.instHasWeakPoint3Nat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_WeakPoint3 := LO.Modal.Hilbert.GLPoint3.instHasWeakPoint3Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KH.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KH.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KH.instHasHNat = { p := 0, mem_H := LO.Modal.Hilbert.KH.instHasHNat._proof_1 }
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.Grz.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.Grz.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.Grz.instHasGrzNat = { p := 0, mem_Grz := LO.Modal.Hilbert.Grz.instHasGrzNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.GrzPoint2.Kripke.consistent
- LO.Modal.Hilbert.GrzPoint2.Kripke.finite_complete
- LO.Modal.Hilbert.GrzPoint2.Kripke.finite_sound
- LO.Modal.Hilbert.GrzPoint2.instGrzNatFormula
- LO.Modal.Hilbert.GrzPoint2.instHasGrzNat
- LO.Modal.Hilbert.GrzPoint2.instHasKNat
- LO.Modal.Hilbert.GrzPoint2.instHasPoint2Nat
@[reducible, inline]
Instances For
Equations
- LO.Modal.Hilbert.GrzPoint2.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.GrzPoint2.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.GrzPoint2.instHasGrzNat = { p := 0, mem_Grz := LO.Modal.Hilbert.GrzPoint2.instHasGrzNat._proof_1 }
Equations
- LO.Modal.Hilbert.GrzPoint2.instHasPoint2Nat = { p := 0, mem_Point2 := LO.Modal.Hilbert.GrzPoint2.instHasPoint2Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.GrzPoint3.Kripke.consistent
- LO.Modal.Hilbert.GrzPoint3.Kripke.finite_complete
- LO.Modal.Hilbert.GrzPoint3.Kripke.finite_sound
- LO.Modal.Hilbert.GrzPoint3.instGrzNatFormula
- LO.Modal.Hilbert.GrzPoint3.instHasGrzNat
- LO.Modal.Hilbert.GrzPoint3.instHasKNat
- LO.Modal.Hilbert.GrzPoint3.instHasPoint3Nat
@[reducible, inline]
Equations
- LO.Modal.Hilbert.GrzPoint3.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.GrzPoint3.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.GrzPoint3.instHasGrzNat = { p := 0, mem_Grz := LO.Modal.Hilbert.GrzPoint3.instHasGrzNat._proof_1 }
Equations
- LO.Modal.Hilbert.GrzPoint3.instHasPoint3Nat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_Point3 := LO.Modal.Hilbert.GrzPoint3.instHasPoint3Nat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Instances For
- LO.Modal.Hilbert.Ver.Kripke.complete
- LO.Modal.Hilbert.Ver.Kripke.complete_finite_isolated
- LO.Modal.Hilbert.Ver.Kripke.consistent
- LO.Modal.Hilbert.Ver.Kripke.instCanonicalNatIsolated
- LO.Modal.Hilbert.Ver.Kripke.sound
- LO.Modal.Hilbert.Ver.Kripke.sound_finite_isolated
- LO.Modal.Hilbert.Ver.instHasKNat
- LO.Modal.Hilbert.Ver.instHasVerNat
- LO.Modal.Hilbert.Ver.instVerNatFormula
@[reducible, inline]
Equations
Instances For
Equations
- LO.Modal.Hilbert.Ver.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.Ver.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.Ver.instHasVerNat = { p := 0, mem_Ver := LO.Modal.Hilbert.Ver.instHasVerNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
- LO.Modal.Hilbert.Triv.Kripke.cannonical_refl_corefl
- LO.Modal.Hilbert.Triv.Kripke.complete_equality
- LO.Modal.Hilbert.Triv.Kripke.complete_finite_equality
- LO.Modal.Hilbert.Triv.Kripke.complete_refl_corefl
- LO.Modal.Hilbert.Triv.Kripke.consistent
- LO.Modal.Hilbert.Triv.Kripke.sound_equality
- LO.Modal.Hilbert.Triv.Kripke.sound_finite_equality
- LO.Modal.Hilbert.Triv.Kripke.sound_refl_corefl
- LO.Modal.Hilbert.Triv.instHasKNat
- LO.Modal.Hilbert.Triv.instHasTNat
- LO.Modal.Hilbert.Triv.instHasTcNat
- LO.Modal.Hilbert.Triv.instTrivNatFormula
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.Triv.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.Triv.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.Triv.instHasTNat = { p := 0, mem_T := LO.Modal.Hilbert.Triv.instHasTNat._proof_1 }
Equations
- LO.Modal.Hilbert.Triv.instHasTcNat = { p := 0, mem_Tc := LO.Modal.Hilbert.Triv.instHasTcNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KTc.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KTc.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KTc.instHasTcNat = { p := 0, mem_Tc := LO.Modal.Hilbert.KTc.instHasTcNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KD4Point3Z.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KD4Point3Z.instHasKNat._proof_1 }
Equations
Equations
- LO.Modal.Hilbert.KD4Point3Z.instHasFourNat = { p := 0, mem_Four := LO.Modal.Hilbert.KD4Point3Z.instHasFourNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
Equations
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
Equations
Equations
- LO.Modal.Hilbert.KTMk.instHasKNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_K := LO.Modal.Hilbert.KTMk.instHasKNat._proof_1 }
Equations
- LO.Modal.Hilbert.KTMk.instHasTNat = { p := 0, mem_T := LO.Modal.Hilbert.KTMk.instHasTNat._proof_1 }
Equations
- LO.Modal.Hilbert.KTMk.instHasMkNat = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.KT.instHasKNat._proof_1, mem_Mk := LO.Modal.Hilbert.KTMk.instHasMkNat._proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.N = { axioms := ∅ }
@[reducible, inline]