- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomTFormulaOfHasT
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hT : H.HasT]
:
Equations
- LO.Modal.Hilbert.instHasAxiomTFormulaOfHasT = { T := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomBFormulaOfHasB
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hB : H.HasB]
:
Equations
- LO.Modal.Hilbert.instHasAxiomBFormulaOfHasB = { B := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomDFormulaOfHasD
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hD : H.HasD]
:
Equations
- LO.Modal.Hilbert.instHasAxiomDFormulaOfHasD = { D := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomFourFormulaOfHasFour
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hFour : H.HasFour]
:
Equations
- LO.Modal.Hilbert.instHasAxiomFourFormulaOfHasFour = { Four := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomFiveFormulaOfHasFive
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hFive : H.HasFive]
:
Equations
- LO.Modal.Hilbert.instHasAxiomFiveFormulaOfHasFive = { Five := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomPoint2FormulaOfHasPoint2
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hPoint2 : H.HasPoint2]
:
Equations
- LO.Modal.Hilbert.instHasAxiomPoint2FormulaOfHasPoint2 = { Point2 := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomWeakPoint2FormulaOfHasWeakPoint2
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDotWeak2 : H.HasWeakPoint2]
:
Equations
- LO.Modal.Hilbert.instHasAxiomWeakPoint2FormulaOfHasWeakPoint2 = { WeakPoint2 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomPoint3FormulaOfHasPoint3
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hPoint3 : H.HasPoint3]
:
Equations
- LO.Modal.Hilbert.instHasAxiomPoint3FormulaOfHasPoint3 = { Point3 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
- q : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomWeakPoint3FormulaOfHasWeakPoint3
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDotWeak3 : H.HasWeakPoint3]
:
Equations
- LO.Modal.Hilbert.instHasAxiomWeakPoint3FormulaOfHasWeakPoint3 = { WeakPoint3 := fun (φ ψ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomLFormulaOfHasL
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hL : H.HasL]
:
Equations
- LO.Modal.Hilbert.instHasAxiomLFormulaOfHasL = { L := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomGrzFormulaOfHasGrz
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hGrz : H.HasGrz]
:
Equations
- LO.Modal.Hilbert.instHasAxiomGrzFormulaOfHasGrz = { Grz := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomTcFormulaOfHasTc
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hTc : H.HasTc]
:
Equations
- LO.Modal.Hilbert.instHasAxiomTcFormulaOfHasTc = { Tc := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomVerFormulaOfDecidableEqOfHasVer
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hVer : H.HasVer]
:
Equations
- LO.Modal.Hilbert.instHasAxiomVerFormulaOfDecidableEqOfHasVer = { Ver := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
- p : α
Instances
instance
LO.Modal.Hilbert.instHasAxiomHFormulaOfHasH
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hH : H.HasH]
:
Equations
- LO.Modal.Hilbert.instHasAxiomHFormulaOfHasH = { H := fun (φ : LO.Modal.Formula α) => LO.Modal.Hilbert.Deduction.maxm ⋯ }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KT = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.T (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKT = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKT.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatKT = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatKT.proof_1 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KD = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.D (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKD.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKD.proof_2 }
Equations
- LO.Modal.Hilbert.instHasDNatKD = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD.proof_1 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KB = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.B (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKB = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKB.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKB.proof_2 }
Equations
- LO.Modal.Hilbert.instHasBNatKB = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKB.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKDB = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKDB.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKDB.proof_2 }
Equations
- LO.Modal.Hilbert.instHasDNatKDB = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKDB.proof_1 }
Equations
- LO.Modal.Hilbert.instHasBNatKDB = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKDB.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKTB = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKTB.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKTB.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatKTB = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatKTB.proof_1 }
Equations
- LO.Modal.Hilbert.instHasBNatKTB = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKTB.proof_1 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.K4 = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Four (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatK4.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatK4.proof_2 }
Equations
- LO.Modal.Hilbert.instHasFourNatK4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK4.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK4Point2 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatK4Point2.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatK4Point2.proof_2 }
Equations
- LO.Modal.Hilbert.instHasFourNatK4Point2 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK4Point2.proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK4Point3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatK4Point3.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatK4Point3.proof_2 }
Equations
- LO.Modal.Hilbert.instHasFourNatK4Point3 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK4Point3.proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKT4B = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKT4B.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKT4B.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatKT4B = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatKT4B.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFourNatKT4B = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKT4B.proof_1 }
Equations
- LO.Modal.Hilbert.instHasBNatKT4B = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKT4B.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK45 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatK45.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatK45.proof_2 }
Equations
- LO.Modal.Hilbert.instHasFourNatK45 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatK45.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFiveNatK45 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatK45.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKD4.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKD4.proof_2 }
Equations
- LO.Modal.Hilbert.instHasDNatKD4 = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD4.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFourNatKD4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKD4.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKD5.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKD5.proof_2 }
Equations
- LO.Modal.Hilbert.instHasDNatKD5 = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD5.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFiveNatKD5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatKD5.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKD45 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKD45.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKD45.proof_2 }
Equations
- LO.Modal.Hilbert.instHasDNatKD45 = { p := 0, mem_D := LO.Modal.Hilbert.instHasDNatKD45.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFourNatKD45 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKD45.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFiveNatKD45 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatKD45.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKB4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKB4.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKB4.proof_2 }
Equations
- LO.Modal.Hilbert.instHasBNatKB4 = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKB4.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFourNatKB4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatKB4.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKB5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKB5.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKB5.proof_2 }
Equations
- LO.Modal.Hilbert.instHasBNatKB5 = { p := 0, mem_B := LO.Modal.Hilbert.instHasBNatKB5.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFiveNatKB5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatKB5.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS4 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatS4.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatS4.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatS4 = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatS4.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFourNatS4 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatS4.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS4Point2 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatS4Point2.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatS4Point2.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatS4Point2 = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatS4Point2.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFourNatS4Point2 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatS4Point2.proof_1 }
Equations
- LO.Modal.Hilbert.instHasPoint2NatS4Point2 = { p := 0, mem_Point2 := LO.Modal.Hilbert.instHasPoint2NatS4Point2.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS4Point3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatS4Point3.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatS4Point3.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatS4Point3 = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatS4Point3.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFourNatS4Point3 = { p := 0, mem_Four := LO.Modal.Hilbert.instHasFourNatS4Point3.proof_1 }
Equations
- LO.Modal.Hilbert.instHasPoint3NatS4Point3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasPoint3NatS4Point3.proof_1, mem_Point3 := LO.Modal.Hilbert.instHasPoint3NatS4Point3.proof_2 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.K5 = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Five (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatK5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatK5.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatK5.proof_2 }
Equations
- LO.Modal.Hilbert.instHasFiveNatK5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatK5.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatS5 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatS5.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatS5.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatS5 = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatS5.proof_1 }
Equations
- LO.Modal.Hilbert.instHasFiveNatS5 = { p := 0, mem_Five := LO.Modal.Hilbert.instHasFiveNatS5.proof_1 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.GL = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.L (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGL = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatGL.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatGL.proof_2 }
Equations
- LO.Modal.Hilbert.instHasLNatGL = { p := 0, mem_L := LO.Modal.Hilbert.instHasLNatGL.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGLPoint3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatGLPoint3.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatGLPoint3.proof_2 }
Equations
- LO.Modal.Hilbert.instHasLNatGLPoint3 = { p := 0, mem_L := LO.Modal.Hilbert.instHasLNatGLPoint3.proof_1 }
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KH = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.H (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKH = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKH.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKH.proof_2 }
Equations
- LO.Modal.Hilbert.instHasHNatKH = { p := 0, mem_H := LO.Modal.Hilbert.instHasHNatKH.proof_1 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.Grz = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Grz (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGrz = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatGrz.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatGrz.proof_2 }
Equations
- LO.Modal.Hilbert.instHasGrzNatGrz = { p := 0, mem_Grz := LO.Modal.Hilbert.instHasGrzNatGrz.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGrzPoint2 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatGrzPoint2.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatGrzPoint2.proof_2 }
Equations
- LO.Modal.Hilbert.instHasGrzNatGrzPoint2 = { p := 0, mem_Grz := LO.Modal.Hilbert.instHasGrzNatGrzPoint2.proof_1 }
Equations
- LO.Modal.Hilbert.instHasPoint2NatGrzPoint2 = { p := 0, mem_Point2 := LO.Modal.Hilbert.instHasPoint2NatGrzPoint2.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatGrzPoint3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatGrzPoint3.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatGrzPoint3.proof_2 }
Equations
- LO.Modal.Hilbert.instHasGrzNatGrzPoint3 = { p := 0, mem_Grz := LO.Modal.Hilbert.instHasGrzNatGrzPoint3.proof_1 }
Equations
- LO.Modal.Hilbert.instHasPoint3NatGrzPoint3 = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasPoint3NatGrzPoint3.proof_1, mem_Point3 := LO.Modal.Hilbert.instHasPoint3NatGrzPoint3.proof_2 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.Ver = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Ver (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatVer = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatVer.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatVer.proof_2 }
Equations
- LO.Modal.Hilbert.instHasVerNatVer = { p := 0, mem_Ver := LO.Modal.Hilbert.instHasVerNatVer.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatTriv = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatTriv.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatTriv.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTNatTriv = { p := 0, mem_T := LO.Modal.Hilbert.instHasTNatTriv.proof_1 }
Equations
- LO.Modal.Hilbert.instHasTcNatTriv = { p := 0, mem_Tc := LO.Modal.Hilbert.instHasTcNatTriv.proof_1 }
@[reducible, inline]
Equations
- LO.Modal.Hilbert.KTc = { axioms := {LO.Axioms.K (LO.Modal.Formula.atom 0) (LO.Modal.Formula.atom 1), LO.Axioms.Tc (LO.Modal.Formula.atom 0)} }
Instances For
Equations
- LO.Modal.Hilbert.instHasKNatKTc = { p := 0, q := 1, ne_pq := LO.Modal.Hilbert.instHasKNatKTc.proof_1, mem_K := LO.Modal.Hilbert.instHasKNatKTc.proof_2 }
Equations
- LO.Modal.Hilbert.instHasTcNatKTc = { p := 0, mem_Tc := LO.Modal.Hilbert.instHasTcNatKTc.proof_1 }