@[reducible, inline]
abbrev
LO.Modal.PLoN.canonicalFrame
{S : Type u_1}
[Entailment (Formula ℕ) S]
(𝓢 : S)
[Entailment.Consistent 𝓢]
[Entailment.Cl 𝓢]
:
Equations
- LO.Modal.PLoN.canonicalFrame 𝓢 = LO.Modal.PLoN.Frame.mk (LO.Modal.MaximalConsistentSet 𝓢) fun (φ : LO.Modal.Formula ℕ) (Ω₁ Ω₂ : LO.Modal.MaximalConsistentSet 𝓢) => ∼□φ ∈ Ω₁ ∧ ∼φ ∈ Ω₂
Instances For
@[reducible, inline]
abbrev
LO.Modal.PLoN.canonicalModel
{S : Type u_1}
[Entailment (Formula ℕ) S]
(𝓢 : S)
[Entailment.Consistent 𝓢]
[Entailment.Cl 𝓢]
:
Equations
- LO.Modal.PLoN.canonicalModel 𝓢 = { toFrame := LO.Modal.PLoN.canonicalFrame 𝓢, Valuation := fun (Ω : (LO.Modal.PLoN.canonicalFrame 𝓢).World) (a : ℕ) => LO.Modal.Formula.atom a ∈ Ω }
Instances For
@[reducible]
instance
LO.Modal.PLoN.instSemanticsFormulaNatWorldCanonicalModel
{S : Type u_1}
[Entailment (Formula ℕ) S]
{𝓢 : S}
[Entailment.Consistent 𝓢]
[Entailment.Cl 𝓢]
:
Semantics (Formula ℕ) (canonicalModel 𝓢).World
theorem
LO.Modal.PLoN.truthlemma
{S : Type u_1}
[Entailment (Formula ℕ) S]
{𝓢 : S}
[Entailment.Consistent 𝓢]
[Entailment.Cl 𝓢]
[Entailment.Necessitation 𝓢]
{φ : Formula ℕ}
{X : (canonicalModel 𝓢).World}
:
class
LO.Modal.PLoN.Canonical
{S : Type u_1}
[Entailment (Formula ℕ) S]
(𝓢 : S)
[Entailment.Consistent 𝓢]
[Entailment.Cl 𝓢]
(C : FrameClass)
:
Instances
instance
LO.Modal.PLoN.instCompleteFormulaNatFrameClassOfCanonical
{S : Type u_1}
[Entailment (Formula ℕ) S]
{𝓢 : S}
[Entailment.Consistent 𝓢]
[Entailment.Cl 𝓢]
[Entailment.Necessitation 𝓢]
{C : FrameClass}
[Canonical 𝓢 C]
:
Complete 𝓢 C