- atom {α : Type u_1} (a : α) : (NNFormula.atom a).IsAtomic
- natom {α : Type u_1} (a : α) : (NNFormula.natom a).IsAtomic
Instances For
Equations
- (LO.Propositional.NNFormula.atom a).instDecidablePredIsAtomic = isTrue ⋯
- (LO.Propositional.NNFormula.natom a).instDecidablePredIsAtomic = isTrue ⋯
- LO.Propositional.NNFormula.verum.instDecidablePredIsAtomic = isFalse ⋯
- LO.Propositional.NNFormula.falsum.instDecidablePredIsAtomic = isFalse ⋯
- (a.and a_1).instDecidablePredIsAtomic = isFalse ⋯
- (a.or a_1).instDecidablePredIsAtomic = isFalse ⋯
@[simp]
@[simp]
Equations
theorem
LO.Propositional.Sequent.weight_remove
{α : Type u_1}
[DecidableEq α]
(Γ : Sequent α)
(φ : NNFormula α)
:
theorem
LO.Propositional.Sequent.weight_remove_le_of_mem
{α : Type u_1}
[DecidableEq α]
{φ : NNFormula α}
{Γ : Sequent α}
(h : φ ∈ Γ)
:
Instances For
Equations
- Γ.chooseNonAtomic H = List.choose (fun (φ : LO.Propositional.NNFormula α) => ¬φ.IsAtomic) Γ ⋯
@[simp]
theorem
LO.Propositional.Sequent.chooseNonAtomic_mem
{α : Type u_1}
{Γ : Sequent α}
(h : ¬Γ.IsAtomic)
:
@[simp]
theorem
LO.Propositional.Sequent.chooseNonAtomic_property
{α : Type u_1}
(Γ : Sequent α)
(h : ¬Γ.IsAtomic)
:
¬(Γ.chooseNonAtomic h).IsAtomic
@[reducible, inline]
Equations
Equations
@[reducible, inline]
Equations
- LO.Propositional.Derivations T S = ((Γ : LO.Propositional.Sequent α) → Γ ∈ S → T ⟹ Γ)
@[reducible, inline]
Equations
- LO.Propositional.Derivations! T S = ∀ Γ ∈ S, T ⟹! Γ
def
LO.Propositional.Derivations.ofSubset
{α : Type u_1}
{T : Theory α}
{S₁ S₂ : Sequents α}
(ss : S₁ ⊆ S₂)
:
Derivations T S₂ → Derivations T S₁
Equations
- LO.Propositional.Derivations.ofSubset ss d Γ hΓ = d Γ ⋯
Equations
@[simp]
instance
LO.Propositional.instDecidablePredSequentIsClosedOfDecidableEq
{α : Type u_1}
[DecidableEq α]
:
Equations
- One or more equations did not get rendered due to their size.
def
LO.Propositional.Derivation.ofIsClosed
{α : Type u_1}
[DecidableEq α]
{T : Theory α}
{Γ : Sequent α}
(h : Γ.IsClosed)
:
Equations
- LO.Propositional.Derivation.ofIsClosed h = match LO.Propositional.Sequent.IsClosed.choose Γ h with | ⟨φ, ⋯⟩ => LO.Propositional.Derivation.em h hn
theorem
LO.Propositional.Sequent.IsOpen.not_tautology
{α : Type u_1}
{Γ : Sequent α}
(h : Γ.IsOpen)
:
def
LO.Propositional.Sequent.reduction
{α : Type u_1}
[DecidableEq α]
{Γ : Sequent α}
(h : ¬Γ.IsAtomic)
:
Sequents α
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Propositional.Sequent.reduction_verum
{α : Type u_1}
{Γ : Sequent α}
[DecidableEq α]
{h : ¬Γ.IsAtomic}
(H : Γ.chooseNonAtomic h = ⊤)
:
theorem
LO.Propositional.Sequent.reduction_falsum
{α : Type u_1}
{Γ : Sequent α}
[DecidableEq α]
{h : ¬Γ.IsAtomic}
(H : Γ.chooseNonAtomic h = ⊥)
:
theorem
LO.Propositional.Sequent.reduction_and
{α : Type u_1}
{Γ : Sequent α}
[DecidableEq α]
{φ ψ : NNFormula α}
{h : ¬Γ.IsAtomic}
(H : Γ.chooseNonAtomic h = φ ⋏ ψ)
:
theorem
LO.Propositional.Sequent.reduction_or
{α : Type u_1}
{Γ : Sequent α}
[DecidableEq α]
{φ ψ : NNFormula α}
{h : ¬Γ.IsAtomic}
(H : Γ.chooseNonAtomic h = φ ⋎ ψ)
:
def
LO.Propositional.Derivation.ofReduction
{α : Type u_1}
[DecidableEq α]
{T : Theory α}
{Γ : Sequent α}
{hΓ : ¬Γ.IsAtomic}
(d : Derivations T (Sequent.reduction hΓ))
:
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Propositional.Derivation.toReduction
{α : Type u_1}
[DecidableEq α]
{T : Theory α}
{Γ : Sequent α}
(hΓ : ¬Γ.IsAtomic)
(d : T ⟹! Γ)
:
Derivations! T (Sequent.reduction hΓ)
@[reducible, inline]
Equations
- S.reduction = List.flatMap (fun (Γ : LO.Propositional.Sequent α) => if h : Γ.IsAtomic then [] else LO.Propositional.Sequent.reduction h) S
theorem
LO.Propositional.Sequent.reduction_sublist
{α : Type u_1}
[DecidableEq α]
{Γ : Sequent α}
(hΓ : ¬Γ.IsAtomic)
{S : Sequents α}
(h : Γ ∈ S)
:
List.Sublist (reduction hΓ) S.reduction
def
LO.Propositional.Derivations.ofReduction
{α : Type u_1}
{T : Theory α}
[DecidableEq α]
{S : Sequents α}
(hS : ¬S.Refuted)
(d : Derivations T S.reduction)
:
Derivations T S
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Propositional.Derivations.toReduction
{α : Type u_1}
{T : Theory α}
[DecidableEq α]
{S : Sequents α}
(d : Derivations! T S)
:
def
LO.Propositional.Derivations.Dec.ofReduction
{α : Type u_1}
[DecidableEq α]
{S : Sequents α}
(hS : ¬S.Refuted)
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Propositional.Derivations.Dec.ofReduction hS (LO.Propositional.Derivations.Dec.provable d) = LO.Propositional.Derivations.Dec.provable (LO.Propositional.Derivations.ofReduction hS d)
@[irreducible]
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Propositional.instDecidablePredSequentIsTautologyOfDecidableEq
{α : Type u_1}
[DecidableEq α]
:
DecidablePred fun (Γ : Sequent α) => Γ.IsTautology
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Propositional.instDecidablePredNNFormulaIsTautologyOfDecidableEq
{α : Type u_1}
[DecidableEq α]
:
DecidablePred fun (φ : NNFormula α) => φ.IsTautology