Documentation

Foundation.Propositional.Decidable

@[simp]
theorem LO.Propositional.NNFormula.ne_neg {α : Type u_1} (φ : NNFormula α) :
φ φ
Instances For
@[simp]
@[simp]
theorem LO.Propositional.NNFormula.weight_atom {α : Type u_1} (a : α) :
@[simp]
@[simp]
theorem LO.Propositional.NNFormula.weight_and {α : Type u_1} (φ ψ : NNFormula α) :
(φ ψ).weight = φ.weight + ψ.weight + 1
@[simp]
theorem LO.Propositional.NNFormula.weight_or {α : Type u_1} (φ ψ : NNFormula α) :
(φ ψ).weight = φ.weight + ψ.weight + 1
@[simp]
theorem LO.Propositional.Sequent.weight_cons {α : Type u_1} (φ : NNFormula α) (Γ : Sequent α) :
weight (φ :: Γ) = φ.weight + Γ.weight
@[simp]
theorem LO.Propositional.Sequent.weight_append {α : Type u_1} (Γ Δ : Sequent α) :
(Γ ++ Δ).weight = Γ.weight + Δ.weight
theorem LO.Propositional.Sequent.weight_le_weight_of_mem {α : Type u_1} {φ : NNFormula α} {Γ : Sequent α} (h : φ Γ) :
theorem LO.Propositional.Sequent.weight_remove_le_of_mem {α : Type u_1} [DecidableEq α] {φ : NNFormula α} {Γ : Sequent α} (h : φ Γ) :
@[simp]
@[simp]
@[reducible, inline]
abbrev LO.Propositional.Sequents (α : Type u_2) :
Type u_2
Equations
theorem LO.Propositional.Sequents.weight_eq_succ_iff {α : Type u_1} {n : } {S : Sequents α} :
S.weight = n + 1 ΓS, Γ.weight = n ΔS, Δ.weight n
theorem LO.Propositional.Sequents.weight_lt_weight_of {α : Type u_1} {S₁ S₂ : Sequents α} {Γ : Sequent α} ( : Γ S₂) (h : ΔS₁, Δ.weight < Γ.weight) :
S₁.weight < S₂.weight
@[reducible, inline]
abbrev LO.Propositional.Derivations {α : Type u_1} (T : Theory α) (S : Sequents α) :
Type u_1
Equations
@[reducible, inline]
abbrev LO.Propositional.Derivations! {α : Type u_1} (T : Theory α) (S : Sequents α) :
Equations
def LO.Propositional.Derivations.ofSubset {α : Type u_1} {T : Theory α} {S₁ S₂ : Sequents α} (ss : S₁ S₂) :
Derivations T S₂Derivations T S₁
Equations
@[simp]
theorem LO.Propositional.Derivations!.nil {α✝ : Type u_2} {T : Theory α✝} :
theorem LO.Propositional.Sequent.IsClosed.cons_iff {α : Type u_1} {φ : NNFormula α} {Γ : Sequent α} :
IsClosed (φ :: Γ) φ Γ Γ.IsClosed
Equations
  • One or more equations did not get rendered due to their size.
def LO.Propositional.Sequent.IsClosed.choose {α : Type u_1} [DecidableEq α] (Γ : Sequent α) :
Γ.IsClosed{ φ : NNFormula α // φ Γ φ Γ }
Equations
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Propositional.Sequent.reduction_and {α : Type u_1} {Γ : Sequent α} [DecidableEq α] {φ ψ : NNFormula α} {h : ¬Γ.IsAtomic} (H : Γ.chooseNonAtomic h = φ ψ) :
reduction h = [(List.remove (φ ψ) Γ).concat φ, (List.remove (φ ψ) Γ).concat ψ]
theorem LO.Propositional.Sequent.reduction_or {α : Type u_1} {Γ : Sequent α} [DecidableEq α] {φ ψ : NNFormula α} {h : ¬Γ.IsAtomic} (H : Γ.chooseNonAtomic h = φ ψ) :
reduction h = [((List.remove (φ ψ) Γ).concat φ).concat ψ]
def LO.Propositional.Derivation.ofReduction {α : Type u_1} [DecidableEq α] {T : Theory α} {Γ : Sequent α} { : ¬Γ.IsAtomic} (d : Derivations T (Sequent.reduction )) :
T Γ
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Propositional.Derivation.toReduction {α : Type u_1} [DecidableEq α] {T : Theory α} {Γ : Sequent α} ( : ¬Γ.IsAtomic) (d : T ⟹! Γ) :
@[reducible, inline]
Equations
Instances For
theorem LO.Propositional.Sequents.Refuted.not_iff {α : Type u_1} {S : Sequents α} :
¬S.Refuted ΓS, Γ.IsAtomicΓ.IsClosed
theorem LO.Propositional.Sequent.reduction_sublist {α : Type u_1} [DecidableEq α] {Γ : Sequent α} ( : ¬Γ.IsAtomic) {S : Sequents α} (h : Γ S) :
Equations
  • One or more equations did not get rendered due to their size.
inductive LO.Propositional.Derivations.Dec {α : Type u_1} :
Sequents αType u_1
@[irreducible]
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.