class
LO.Propositional.Entailment.VF
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
(𝓢 : S)
extends LO.Entailment.HasAxiomAndElim 𝓢, LO.Entailment.HasAxiomOrInst 𝓢, LO.Propositional.Entailment.HasDistributeAndOr 𝓢, LO.Propositional.Entailment.HasImpId 𝓢, LO.Entailment.HasAxiomVerum 𝓢, LO.Entailment.HasAxiomEFQ 𝓢, LO.Entailment.ModusPonens 𝓢, LO.Propositional.Entailment.AFortiori 𝓢, LO.Propositional.Entailment.AndIntroRule 𝓢, LO.Propositional.Entailment.RuleC 𝓢, LO.Propositional.Entailment.RuleD 𝓢, LO.Propositional.Entailment.RuleI 𝓢 :
Type (max u_2 u_3)
Instances
instance
LO.Propositional.Entailment.Corsi.instHasCollectOrAnd
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
:
Equations
- One or more equations did not get rendered due to their size.
@[simp, deprecated ]
theorem
LO.Propositional.Entailment.Corsi.not_bot
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
[Entailment.Consistent 𝓢]
:
theorem
LO.Propositional.Entailment.Corsi.CA_replace_both
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ ψ : F}
[Entailment.VF 𝓢]
{φ' ψ' : F}
(h₁ : 𝓢 ⊢ φ ➝ φ')
(h₂ : 𝓢 ⊢ ψ ➝ ψ')
:
theorem
LO.Propositional.Entailment.Corsi.CA_replace_left
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ ψ : F}
[Entailment.VF 𝓢]
{φ' : F}
(h : 𝓢 ⊢ φ' ➝ φ)
:
theorem
LO.Propositional.Entailment.Corsi.CA_replace_right
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ ψ : F}
[Entailment.VF 𝓢]
{ψ' : F}
(h : 𝓢 ⊢ ψ ➝ ψ')
:
theorem
LO.Propositional.Entailment.Corsi.C_replace_both
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ ψ : F}
[Entailment.VF 𝓢]
{φ' ψ' : F}
(h : 𝓢 ⊢ φ ➝ ψ)
(h₁ : 𝓢 ⊢ φ' ➝ φ)
(h₂ : 𝓢 ⊢ ψ ➝ ψ')
:
theorem
LO.Propositional.Entailment.Corsi.CKK_right_replace
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ ψ : F}
[Entailment.VF 𝓢]
{ψ' : F}
(h : 𝓢 ⊢ ψ ➝ ψ')
:
theorem
LO.Propositional.Entailment.Corsi.insert_LConj
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{Γ : List F}
:
@[simp]
theorem
LO.Propositional.Entailment.Corsi.conjconj
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
{Γ : Finset F}
:
theorem
LO.Propositional.Entailment.Corsi.LConj₂Conj₂_of_provable
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
{γ : F}
{Δ : List F}
(h : ∀ δ ∈ Δ, 𝓢 ⊢ γ ➝ δ)
:
theorem
LO.Propositional.Entailment.Corsi.ruleC_lconj₂
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{Γ : List F}
(h : ∀ γ ∈ Γ, 𝓢 ⊢ φ ➝ γ)
:
theorem
LO.Propositional.Entailment.Corsi.ruleC_fconj
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{Γ : Finset F}
(h : ∀ γ ∈ Γ, 𝓢 ⊢ φ ➝ γ)
:
theorem
LO.Propositional.Entailment.Corsi.ruleC_fconj'
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{ι : Type u_3}
{Γ : Finset ι}
(Φ : ι → F)
(h : ∀ i ∈ Γ, 𝓢 ⊢ φ ➝ Φ i)
:
theorem
LO.Propositional.Entailment.Corsi.mem_lconj₂
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{Γ : List F}
(h : φ ∈ Γ)
:
theorem
LO.Propositional.Entailment.Corsi.mem_fconj
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{Γ : Finset F}
(h : φ ∈ Γ)
:
theorem
LO.Propositional.Entailment.Corsi.mem_fconj'
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{ψ : F}
[Entailment.VF 𝓢]
{ι : Type u_3}
{Γ : Finset ι}
(Φ : ι → F)
(hΦ : ∃ i ∈ Γ, Φ i = ψ)
:
theorem
LO.Propositional.Entailment.Corsi.LConj₂Conj₂_of_subset
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
{Γ Δ : List F}
(h : ∀ φ ∈ Δ, φ ∈ Γ)
:
theorem
LO.Propositional.Entailment.Corsi.CFConjFConj_of_subset
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
{Γ Δ : Finset F}
(h : Δ ⊆ Γ)
:
theorem
LO.Propositional.Entailment.Corsi.FConj₂_of_LConj
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
[DecidableEq F]
{Γ : List F}
:
theorem
LO.Propositional.Entailment.Corsi.insert_FConj
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
[DecidableEq F]
{Γ : Finset F}
:
theorem
LO.Propositional.Entailment.Corsi.CFConjFConj_of_provable
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
{γ : F}
{Δ : Finset F}
(h : ∀ δ ∈ Δ, 𝓢 ⊢ γ ➝ δ)
:
theorem
LO.Propositional.Entailment.Corsi.mem_ldisj₂
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{ψ : F}
[Entailment.VF 𝓢]
{Γ : List F}
(h : ψ ∈ Γ)
:
theorem
LO.Propositional.Entailment.Corsi.mem_fdisj'
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{ψ : F}
[Entailment.VF 𝓢]
{ι : Type u_3}
{Γ : Finset ι}
(Φ : ι → F)
(hΦ : ∃ i ∈ Γ, Φ i = ψ)
:
theorem
LO.Propositional.Entailment.Corsi.ruleD_ldisj₂
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{Γ : List F}
(h : ∀ γ ∈ Γ, 𝓢 ⊢ γ ➝ φ)
:
theorem
LO.Propositional.Entailment.Corsi.ruleD_fdisj'
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
{φ : F}
[Entailment.VF 𝓢]
{ι : Type u_3}
{Γ : Finset ι}
(Φ : ι → F)
(h : ∀ i ∈ Γ, 𝓢 ⊢ Φ i ➝ φ)
:
theorem
LO.Propositional.Entailment.Corsi.DP_ldisj₂
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
[Entailment.Disjunctive 𝓢]
[Entailment.Consistent 𝓢]
{Γ : List F}
(h : 𝓢 ⊢ ⋁Γ)
:
∃ γ ∈ Γ, 𝓢 ⊢ γ
theorem
LO.Propositional.Entailment.Corsi.DP_fdisj
{S : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[Entailment S F]
{𝓢 : S}
[Entailment.VF 𝓢]
[Entailment.Disjunctive 𝓢]
[Entailment.Consistent 𝓢]
{ι : Type u_3}
{Γ : Finset ι}
(Φ : ι → F)
(h : 𝓢 ⊢ ⩖ (i : ι) ∈ Γ, Φ i)
:
∃ i ∈ Γ, 𝓢 ⊢ Φ i