- p : α
Instances
instance
LO.Propositional.Hilbert.instHasAxiomLEMFormulaOfDecidableEqOfHasLEM
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hLEM : H.HasLEM]
:
Equations
- p : α
Instances
instance
LO.Propositional.Hilbert.instHasAxiomDNEFormulaOfDecidableEqOfHasDNE
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDNE : H.HasDNE]
:
Equations
- p : α
Instances
instance
LO.Propositional.Hilbert.instHasAxiomWeakLEMFormulaOfDecidableEqOfHasWeakLEM
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hWLEM : H.HasWeakLEM]
:
Equations
- p : α
- q : α
- mem_dummet : (Formula.atom (p H) ➝ Formula.atom (q H)) ⋎ (Formula.atom (q H) ➝ Formula.atom (p H)) ∈ H.axioms
Instances
instance
LO.Propositional.Hilbert.instHasAxiomDummettFormulaOfDecidableEqOfHasDummett
{α : Type u_1}
{H : Hilbert α}
[DecidableEq α]
[hDummett : H.HasDummett]
:
Equations
- LO.Propositional.Hilbert.instHasAxiomDummettFormulaOfDecidableEqOfHasDummett = { dummett := fun (φ ψ : LO.Propositional.Formula α) => LO.Propositional.Hilbert.Deduction.maxm ⋯ }
@[reducible, inline]
Equations
Instances For
Equations
- LO.Propositional.Hilbert.instHasEFQNatCl = { p := 0, mem_efq := LO.Propositional.Hilbert.instHasEFQNatCl.proof_1 }
Equations
- LO.Propositional.Hilbert.instHasLEMNatCl = { p := 0, mem_lem := LO.Propositional.Hilbert.instHasLEMNatCl.proof_1 }
@[reducible, inline]
Equations
Instances For
Equations
- LO.Propositional.Hilbert.instHasEFQNatKC = { p := 0, mem_efq := LO.Propositional.Hilbert.instHasEFQNatKC.proof_1 }
Equations
- LO.Propositional.Hilbert.instHasWeakLEMNatKC = { p := 0, mem_wlem := LO.Propositional.Hilbert.instHasWeakLEMNatKC.proof_1 }
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Propositional.Hilbert.instHasEFQNatLC = { p := 0, mem_efq := LO.Propositional.Hilbert.instHasEFQNatLC.proof_1 }
Equations
- One or more equations did not get rendered due to their size.