Documentation

Foundation.ProvabilityLogic.Realization

Mapping modal prop vars to first-order sentence

Instances For

    Mapping modal formulae to first-order sentence

    Equations
    Instances For
      theorem LO.ProvabilityLogic.Realization.letterless_interpret {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T : FirstOrder.Theory L} {A : Modal.Formula } {𝔅 : Provability T₀ T} {f₁ f₂ : Realization 𝔅} (A_letterless : A.Letterless) :
      f₁ A = f₂ A
      @[simp]
      theorem LO.ProvabilityLogic.Realization.interpret.def_imp {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T : FirstOrder.Theory L} {𝔅 : Provability T₀ T} {f : Realization 𝔅} {A B : Modal.Formula } :
      f (A B) = f A f B
      @[simp]
      theorem LO.ProvabilityLogic.Realization.interpret.def_box {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T : FirstOrder.Theory L} {𝔅 : Provability T₀ T} {f : Realization 𝔅} {A : Modal.Formula } :
      f (A) = 𝔅 (f A)
      @[simp]
      theorem LO.ProvabilityLogic.Realization.interpret.def_boxItr {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T : FirstOrder.Theory L} {𝔅 : Provability T₀ T} {f : Realization 𝔅} {A : Modal.Formula } (n : ) :
      f (□^[n]A) = (↑𝔅)^[n] (f A)
      @[simp]
      theorem LO.ProvabilityLogic.Realization.interpret.iff_provable_lconj' {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T U : FirstOrder.Theory L} {𝔅 : Provability T₀ T} {f : Realization 𝔅} [DecidableEq (FirstOrder.Sentence L)] {α✝ : Type u_1} {ι : Modal.Formula α✝Modal.Formula } {l : List (Modal.Formula α✝)} :
      U ⊢! f (List.conj' ι l) Al, U ⊢! f (ι A)
      @[simp]
      theorem LO.ProvabilityLogic.Realization.interpret.iff_provable_fconj' {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T U : FirstOrder.Theory L} {𝔅 : Provability T₀ T} {f : Realization 𝔅} [DecidableEq (FirstOrder.Sentence L)] {α✝ : Type u_1} {ι : Modal.Formula α✝Modal.Formula } {s : Finset (Modal.Formula α✝)} :
      U ⊢! f (s.conj' ι) As, U ⊢! f (ι A)
      @[simp]
      theorem LO.ProvabilityLogic.Realization.interpret.iff_models₀_imp {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T : FirstOrder.Theory L} {𝔅 : Provability T₀ T} {f : Realization 𝔅} {A B : Modal.Formula } {M : Type u_2} [Nonempty M] [FirstOrder.Structure L M] :
      M ⊧ₘ f (A B) M ⊧ₘ f AM ⊧ₘ f B
      @[simp]
      @[simp]
      @[simp]
      @[simp]
      theorem LO.ProvabilityLogic.Realization.interpret.iff_models₀_boxItr {L : FirstOrder.Language} [L.ReferenceableBy L] {T₀ T : FirstOrder.Theory L} {𝔅 : Provability T₀ T} {f : Realization 𝔅} {A : Modal.Formula } {M : Type u_2} [Nonempty M] [FirstOrder.Structure L M] {n : } :
      M ⊧ₘ f (□^[n]A) M ⊧ₘ (↑𝔅)^[n] (f A)