Documentation

Foundation.Vorspiel.Collection

instance instConsSet (α : Type u_1) :
Cons α (Set α)
Equations
instance instConsList (α : Type u_1) :
Cons α (List α)
Equations
instance instConsMultiset (α : Type u_1) :
Cons α (Multiset α)
Equations
instance Set.collection {α : Type u_1} :
Collection α (Set α)
Equations
  • One or more equations did not get rendered due to their size.
instance List.collection {α : Type u_1} :
Equations
  • One or more equations did not get rendered due to their size.
instance Multiset.collection {α : Type u_1} :
Equations
  • One or more equations did not get rendered due to their size.
instance Finset.collection {α : Type u_1} [DecidableEq α] :
Equations
  • One or more equations did not get rendered due to their size.
def Collection.set {β : Type u_1} {α : Type u_2} [Collection β α] :
αSet β
Equations
@[simp]
theorem Collection.mem_set_iff {β : Type u_1} {α : Type u_2} [Collection β α] {x : β} {a : α} :
x set a x a
theorem Collection.subset_iff_set_subset_set {β : Type u_1} {α : Type u_2} [Collection β α] {a b : α} :
a b set a set b
@[simp]
theorem Collection.subset_refl {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
a a
theorem Collection.subset_trans {β : Type u_1} {α : Type u_2} [Collection β α] {a b c : α} (ha : a b) (hb : b c) :
a c
theorem Collection.subset_antisymm {β : Type u_1} {α : Type u_2} [Collection β α] {a b : α} (ha : a b) (hb : b a) :
set a = set b
@[simp]
theorem Collection.empty_subset {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
@[simp]
theorem Collection.mem_cons {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) (x : β) :
x cons x a
@[simp]
theorem Collection.subset_cons {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) (x : β) :
a cons x a
@[simp]
theorem Collection.set_empty {β : Type u_1} {α : Type u_2} [Collection β α] :
@[simp]
theorem Collection.set_cons {β : Type u_1} {α : Type u_2} [Collection β α] (z : β) (a : α) :
set (cons z a) = insert z (set a)
def Collection.Finite {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
Equations
@[simp]
theorem Collection.empty_finite {β : Type u_1} {α : Type u_2} [Collection β α] :
theorem Collection.Finite.of_subset {β : Type u_1} {α : Type u_2} [Collection β α] {a b : α} (ha : Finite a) (h : b a) :
@[simp]
theorem Collection.cons_finite_iff {β : Type u_1} {α : Type u_2} [Collection β α] {z : β} {a : α} :
def Collection.addList {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
List βα
Equations
def List.toCollection {β : Type u_1} {α : Type u_2} [Collection β α] :
List βα
Equations
noncomputable def Finset.toCollection {β : Type u_1} {α : Type u_2} [Collection β α] :
Finset βα
Equations
@[simp]
theorem Collection.mem_list_toCollection {β : Type u_1} {α : Type u_2} [Collection β α] {x : β} {l : List β} :
@[simp]
theorem Collection.mem_finset_toCollection {β : Type u_1} {α : Type u_2} [Collection β α] {x : β} {s : Finset β} :
@[simp]
theorem Collection.list_toCollection_finite {β : Type u_1} {α : Type u_2} [Collection β α] (l : List β) :
@[simp]
theorem Collection.finset_toCollection_finite {β : Type u_1} {α : Type u_2} [Collection β α] (s : Finset β) :
theorem Set.cons_eq {α : Type u_1} (a : α) (s : Set α) :
cons a s = insert a s
@[simp]
theorem Set.collection_set {α : Type u_1} (s : Set α) :
@[simp]