Documentation

Foundation.Vorspiel.Rel.WCWF

@[reducible, inline]
abbrev WeaklyConverseWellFounded {α : Type u_1} (rel : Rel α α) :
Equations
Instances For
    class IsWeaklyConverseWellFounded (α : Type u_1) (rel : Rel α α) :
    Instances
      theorem dependent_choice {α : Type u_1} {rel : ααProp} (h : ∃ (s : Set α), s.Nonempty as, bs, rel a b) :
      ∃ (f : α), ∀ (x : ), rel (f x) (f (x + 1))
      theorem Finite.exists_ne_map_eq_of_infinite_lt {α : Type u_2} {β : Sort u_3} [LinearOrder α] [Infinite α] [Finite β] (f : αβ) :
      ∃ (x : α) (y : α), x < y f x = f y
      instance instIsAntisymmOfIsWeaklyConverseWellFounded {α : Type u_1} {rel : ααProp} [IsWeaklyConverseWellFounded α rel] :
      IsAntisymm α rel
      theorem weaklyConverseWellFounded_of_finite_trans_antisymm {α : Type u_1} {rel : ααProp} (hFin : Finite α) (R_trans : Transitive rel) :