Documentation

Init.Data.Iterators.PostconditionMonad

@[unbox]
structure Std.Iterators.PostconditionT (m : Type w → Type w') (α : Type w) :
Type (max w w')

PostconditionT m α represents an operation in the monad m together with a intrinsic proof that some postcondition holds for the α valued monadic result. It consists of a predicate P about α and an element of m ({ a // P a }) and is a helpful tool for intrinsic verification, notably termination proofs, in the context of iterators.

PostconditionT m is a monad if m is. However, note that PostconditionT m α is a structure, so that the compiler will generate inefficient code from recursive functions returning PostconditionT m α. Optimizations for ReaderT, StateT etc. aren't applicable for structures.

Moreover, PostconditionT m α is not a well-behaved monad transformer because PostconditionT.lift neither commutes with pure nor with bind.

  • Property : αProp

    A predicate that holds for the return value(s) of the m-monadic operation.

  • operation : m (Subtype self.Property)

    The actual monadic operation. Its return value is bundled together with a proof that it satisfies Property.

Instances For
@[inline]
def Std.Iterators.PostconditionT.lift {α : Type w} {m : Type w → Type w'} [Functor m] (x : m α) :

Lifts an operation from m to PostconditionT m without asserting any nontrivial postcondition.

Caution: lift is not a lawful lift function. For example, pure a : PostconditionT m α is not the same as PostconditionT.lift (pure a : m α).

Equations
@[inline]
def Std.Iterators.PostconditionT.pure {m : Type w → Type w'} [Pure m] {α : Type w} (a : α) :
Equations
@[inline]
def Std.Iterators.PostconditionT.liftWithProperty {α : Type w} {m : Type w → Type w'} {P : αProp} (x : m { α : α // P α }) :

Lifts a monadic value from m { a : α // P a } to a value PostconditionT m α.

Equations
@[inline]
def Std.Iterators.PostconditionT.map {m : Type w → Type w'} [Functor m] {α β : Type w} (f : αβ) (x : PostconditionT m α) :

Given a function f : α → β, returns a a function PostconditionT m α → PostconditionT m β, turning PostconditionT m into a functor.

The postcondition of the x.map f states that the return value is the image under f of some a : α satisfying the x.Property.

Equations
@[inline]
def Std.Iterators.PostconditionT.bind {m : Type w → Type w'} [Monad m] {α β : Type w} (x : PostconditionT m α) (f : αPostconditionT m β) :

Given a function α → PostconditionT m β, returns a a function PostconditionT m α → PostconditionT m β, turning PostconditionT m into a monad.

Equations
  • One or more equations did not get rendered due to their size.
@[inline]
def Std.Iterators.PostconditionT.pbind {m : Type w → Type w'} [Monad m] {α β : Type w} (x : PostconditionT m α) (f : Subtype x.PropertyPostconditionT m β) :

A version of bind that provides a proof of the previous postcondition to the mapping function.

Equations
  • One or more equations did not get rendered due to their size.
@[inline]
def Std.Iterators.PostconditionT.liftMap {m : Type w → Type w'} [Monad m] {α β : Type w} (f : αβ) (x : m α) :

Lifts an operation from m to PostConditionT m and then applies PostconditionT.map.

Equations
@[inline]
def Std.Iterators.PostconditionT.run {m : Type w → Type w'} [Monad m] {α : Type w} (x : PostconditionT m α) :
m α

Converts an operation from PostConditionT m to m, discarding the postcondition.

Equations
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Std.Iterators.PostconditionT.property_pure {m : Type w → Type w'} [Monad m] {α : Type w} {x : α} :
(pure x).Property = fun (x_1 : α) => x = x_1
@[simp]
theorem Std.Iterators.PostconditionT.operation_pure {m : Type w → Type w'} [Monad m] {α : Type w} {x : α} :
theorem Std.Iterators.PostconditionT.ext {m : Type w → Type w'} [Monad m] [LawfulMonad m] {α : Type w} {x y : PostconditionT m α} (h : x.Property = y.Property) (h' : (fun (p : Subtype x.Property) => p.val, ) <$> x.operation = y.operation) :
x = y
theorem Std.Iterators.PostconditionT.ext_iff {m : Type w → Type w'} [Monad m] [LawfulMonad m] {α : Type w} {x y : PostconditionT m α} :
x = y (h : x.Property = y.Property), (fun (p : Subtype x.Property) => p.val, ) <$> x.operation = y.operation
@[simp]
theorem Std.Iterators.PostconditionT.map_eq_pure_bind {m : Type w → Type w'} [Monad m] [LawfulMonad m] {α β : Type w} {f : αβ} {x : PostconditionT m α} :
@[simp]
theorem Std.Iterators.PostconditionT.pure_bind {m : Type w → Type w'} [Monad m] [LawfulMonad m] {α β : Type w} {f : αPostconditionT m β} {a : α} :
(pure a).bind f = f a
@[simp]
theorem Std.Iterators.PostconditionT.bind_pure {m : Type w → Type w'} [Monad m] [LawfulMonad m] {α : Type w} {x : PostconditionT m α} :
x.bind pure = x
@[simp]
theorem Std.Iterators.PostconditionT.bind_assoc {m : Type w → Type w'} [Monad m] [LawfulMonad m] {α β γ : Type w} {x : PostconditionT m α} {f : αPostconditionT m β} {g : βPostconditionT m γ} :
(x.bind f).bind g = x.bind fun (a : α) => (f a).bind g
@[simp]
theorem Std.Iterators.PostconditionT.map_pure {m : Type w → Type w'} [Monad m] [LawfulMonad m] {α β : Type w} {f : αβ} {a : α} :
@[simp]
theorem Std.Iterators.PostconditionT.property_map {m : Type w → Type w'} [Functor m] {α β : Type w} {x : PostconditionT m α} {f : αβ} {b : β} :
@[simp]
theorem Std.Iterators.PostconditionT.operation_map {m : Type w → Type w'} [Functor m] {α β : Type w} {x : PostconditionT m α} {f : αβ} :
@[simp]
theorem Std.Iterators.PostconditionT.property_lift {m : Type w → Type w'} [Functor m] {α : Type w} {x : m α} :
(lift x).Property = fun (x : α) => True
@[simp]
theorem Std.Iterators.PostconditionT.operation_lift {m : Type w → Type w'} [Functor m] {α : Type w} {x : m α} :
(lift x).operation = (fun (x_1 : α) => x_1, ) <$> x