Documentation

Init.GrindInstances.Ring.Fin

def Lean.Grind.Fin.npow {n : Nat} [NeZero n] (x : Fin n) (y : Nat) :
Fin n
Equations
@[simp]
theorem Lean.Grind.Fin.pow_zero {n : Nat} [NeZero n] (a : Fin n) :
a ^ 0 = 1
@[simp]
theorem Lean.Grind.Fin.pow_succ {n : Nat} [NeZero n] (a : Fin n) (n✝ : Nat) :
a ^ (n✝ + 1) = a ^ n✝ * a
theorem Lean.Grind.Fin.add_assoc {n : Nat} (a b c : Fin n) :
a + b + c = a + (b + c)
theorem Lean.Grind.Fin.add_comm {n : Nat} (a b : Fin n) :
a + b = b + a
theorem Lean.Grind.Fin.add_zero {n : Nat} [NeZero n] (a : Fin n) :
a + 0 = a
theorem Lean.Grind.Fin.neg_add_cancel {n : Nat} [NeZero n] (a : Fin n) :
-a + a = 0
theorem Lean.Grind.Fin.mul_assoc {n : Nat} (a b c : Fin n) :
a * b * c = a * (b * c)
theorem Lean.Grind.Fin.mul_comm {n : Nat} (a b : Fin n) :
a * b = b * a
theorem Lean.Grind.Fin.zero_mul {n : Nat} [NeZero n] (a : Fin n) :
0 * a = 0
theorem Lean.Grind.Fin.mul_one {n : Nat} [NeZero n] (a : Fin n) :
a * 1 = a
theorem Lean.Grind.Fin.left_distrib {n : Nat} (a b c : Fin n) :
a * (b + c) = a * b + a * c
theorem Lean.Grind.Fin.sub_eq_add_neg {n : Nat} [NeZero n] (a b : Fin n) :
a - b = a + -b
theorem Nat.sub_sub_right (a : Nat) {b c : Nat} (h : c b) :
a - (b - c) = a + c - b
theorem Lean.Grind.Fin.neg_mul {n : Nat} [NeZero n] (a b : Fin n) :
-a * b = -(a * b)
theorem Lean.Grind.Fin.intCast_neg {n : Nat} [NeZero n] (i : Int) :
↑(-i) = -i
Equations
  • One or more equations did not get rendered due to their size.