Documentation

Mathlib.Algebra.GroupWithZero.WithZero

Adjoining a zero to a group #

This file proves that one can adjoin a new zero element to a group and get a group with zero.

In valuation theory, valuations have codomain {0} ∪ {c ^ n | n : ℤ} for some c > 1, which we can formalise as ℤᵐ⁰ := WithZero (Multiplicative ℤ). It is important to be able to talk about the maps n ↦ c ^ n and c ^ n ↦ n. We define these as exp : ℤ → ℤᵐ⁰ and log : ℤᵐ⁰ → ℤ with junk value log 0 = 0. Junkless versions are defined as expEquiv : ℤ ≃ ℤᵐ⁰ˣ and logEquiv : ℤᵐ⁰ˣ ≃ ℤ.

Notation #

In locale WithZero:

Main definitions #

instance WithZero.one {α : Type u_1} [One α] :
Equations
@[simp]
theorem WithZero.coe_one {α : Type u_1} [One α] :
1 = 1
@[simp]
theorem WithZero.recZeroCoe_one {M : Type u_4} {N : Type u_5} [One M] (f : MN) (z : N) :
recZeroCoe z f 1 = f 1
instance WithZero.instMulZeroClass {α : Type u_1} [Mul α] :
Equations
@[simp]
theorem WithZero.coe_mul {α : Type u_1} [Mul α] (a b : α) :
↑(a * b) = a * b
theorem WithZero.unzero_mul {α : Type u_1} [Mul α] {x y : WithZero α} (hxy : x * y 0) :
unzero hxy = unzero * unzero
Equations
Equations
  • One or more equations did not get rendered due to their size.

Coercion as a monoid hom.

Equations
@[simp]
theorem WithZero.coeMonoidHom_apply {α : Type u_1} [MulOneClass α] (a✝ : α) :
coeMonoidHom a✝ = a✝
theorem WithZero.monoidWithZeroHom_ext {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] f g : WithZero α →*₀ β (h : (↑f).comp coeMonoidHom = (↑g).comp coeMonoidHom) :
f = g
theorem WithZero.monoidWithZeroHom_ext_iff {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] {f g : WithZero α →*₀ β} :
def WithZero.lift' {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] :
(α →* β) (WithZero α →*₀ β)

The (multiplicative) universal property of WithZero.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem WithZero.lift'_symm_apply_apply {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (F : WithZero α →*₀ β) (a✝ : α) :
(lift'.symm F) a✝ = F a✝
theorem WithZero.lift'_zero {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (f : α →* β) :
(lift' f) 0 = 0
@[simp]
theorem WithZero.lift'_coe {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (f : α →* β) (x : α) :
(lift' f) x = f x
theorem WithZero.lift'_unique {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] (f : WithZero α →*₀ β) :
theorem WithZero.lift'_surjective {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulZeroOneClass β] {f : α →* β} (hf : Function.Surjective f) :
def WithZero.map' {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) :

The MonoidWithZero homomorphism WithZero α →* WithZero β induced by a monoid homomorphism f : α →* β.

Equations
theorem WithZero.map'_zero {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) :
(map' f) 0 = 0
@[simp]
theorem WithZero.map'_coe {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] (f : α →* β) (x : α) :
(map' f) x = (f x)
@[simp]
theorem WithZero.map'_id {β : Type u_2} [MulOneClass β] :
theorem WithZero.map'_map' {α : Type u_1} {β : Type u_2} {γ : Type u_3} [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : α →* β) (g : β →* γ) (x : WithZero α) :
(map' g) ((map' f) x) = (map' (g.comp f)) x
@[simp]
theorem WithZero.map'_comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : α →* β) (g : β →* γ) :
map' (g.comp f) = (map' g).comp (map' f)
theorem WithZero.map'_injective_iff {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] {f : α →* β} :
theorem WithZero.map'_injective {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] {f : α →* β} :

Alias of the reverse direction of WithZero.map'_injective_iff.

theorem WithZero.map'_surjective {α : Type u_1} {β : Type u_2} [MulOneClass α] [MulOneClass β] {f : α →* β} :

Alias of the reverse direction of WithZero.map'_surjective_iff.

instance WithZero.pow {α : Type u_1} [One α] [Pow α ] :
Equations
@[simp]
theorem WithZero.coe_pow {α : Type u_1} [One α] [Pow α ] (a : α) (n : ) :
↑(a ^ n) = a ^ n
Equations
  • One or more equations did not get rendered due to their size.
Equations
instance WithZero.inv {α : Type u_1} [Inv α] :

Extend the inverse operation on α to WithZero α by sending 0 to 0.

Equations
@[simp]
theorem WithZero.coe_inv {α : Type u_1} [Inv α] (a : α) :
a⁻¹ = (↑a)⁻¹
@[simp]
theorem WithZero.inv_zero {α : Type u_1} [Inv α] :
0⁻¹ = 0
Equations
instance WithZero.div {α : Type u_1} [Div α] :
Equations
theorem WithZero.coe_div {α : Type u_1} [Div α] (a b : α) :
↑(a / b) = a / b
instance WithZero.instPowInt {α : Type u_1} [One α] [Pow α ] :
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem WithZero.coe_zpow {α : Type u_1} [One α] [Pow α ] (a : α) (n : ) :
↑(a ^ n) = a ^ n
Equations
  • One or more equations did not get rendered due to their size.
Equations

If α is a group then WithZero α is a group with zero.

Equations
  • One or more equations did not get rendered due to their size.

Any group is isomorphic to the units of itself adjoined with 0.

Equations
@[simp]
@[simp]
def WithZero.withZeroUnitsEquiv {G : Type u_4} [GroupWithZero G] [DecidablePred fun (a : G) => a = 0] :

Any group with zero is isomorphic to adjoining 0 to the units of itself.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem WithZero.withZeroUnitsEquiv_symm_apply {G : Type u_4} [GroupWithZero G] [DecidablePred fun (a : G) => a = 0] (a : G) :
withZeroUnitsEquiv.symm a = if h : a = 0 then 0 else (Units.mk0 a h)
def MulEquiv.withZero {α : Type u_1} {β : Type u_2} [Group α] [Group β] :
α ≃* β (WithZero α ≃* WithZero β)

A version of Equiv.optionCongr for WithZero.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem MulEquiv.withZero_symm_apply_apply {α : Type u_1} {β : Type u_2} [Group α] [Group β] (e : WithZero α ≃* WithZero β) (x : α) :
@[simp]
theorem MulEquiv.withZero_apply_apply {α : Type u_1} {β : Type u_2} [Group α] [Group β] (e : α ≃* β) (a : WithZero α) :
(withZero e) a = (WithZero.map' e) a
@[simp]
theorem MulEquiv.withZero_apply_symm_apply {α : Type u_1} {β : Type u_2} [Group α] [Group β] (e : α ≃* β) (a : WithZero β) :
@[simp]
theorem MulEquiv.withZero_symm_apply_symm_apply {α : Type u_1} {β : Type u_2} [Group α] [Group β] (e : WithZero α ≃* WithZero β) (x : β) :
@[reducible, inline]
abbrev MulEquiv.unzero {α : Type u_1} {β : Type u_2} [Group α] [Group β] (e : WithZero α ≃* WithZero β) :
α ≃* β

The inverse of MulEquiv.withZero.

Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations

Exponential and logarithm #

Mᵐ⁰ is notation for WithZero (Multiplicative M).

This naturally shows up as the codomain of valuations in valuation theory.

Equations
def WithZero.exp {M : Type u_4} (a : M) :

The exponential map as a function M → Mᵐ⁰.

Equations
@[simp]
theorem WithZero.exp_ne_zero {M : Type u_4} {a : M} :
exp a 0
def WithZero.log {M : Type u_4} [AddMonoid M] (x : WithZero (Multiplicative M)) :
M

The logarithm as a function Mᵐ⁰ → M with junk value log 0 = 0.

Equations
@[simp]
theorem WithZero.log_exp {M : Type u_4} [AddMonoid M] (a : M) :
(exp a).log = a
@[simp]
theorem WithZero.exp_log {M : Type u_4} [AddMonoid M] {x : WithZero (Multiplicative M)} (hx : x 0) :
exp x.log = x
@[simp]
theorem WithZero.log_zero {M : Type u_4} [AddMonoid M] :
log 0 = 0
@[simp]
theorem WithZero.exp_zero {M : Type u_4} [AddMonoid M] :
exp 0 = 1
@[simp]
theorem WithZero.log_one {M : Type u_4} [AddMonoid M] :
log 1 = 0
theorem WithZero.exp_add {M : Type u_4} [AddMonoid M] (a b : M) :
exp (a + b) = exp a * exp b
theorem WithZero.log_mul {M : Type u_4} [AddMonoid M] {x y : WithZero (Multiplicative M)} (hx : x 0) (hy : y 0) :
(x * y).log = x.log + y.log
theorem WithZero.exp_nsmul {M : Type u_4} [AddMonoid M] (n : ) (a : M) :
exp (n a) = exp a ^ n
theorem WithZero.log_pow {M : Type u_4} [AddMonoid M] (x : WithZero (Multiplicative M)) (n : ) :
(x ^ n).log = n x.log

The exponential map as an equivalence between G and (Gᵐ⁰)ˣ.

Equations

The logarithm as an equivalence between (Gᵐ⁰)ˣ and G.

Equations
@[simp]
theorem WithZero.coe_expEquiv_apply {G : Type u_5} [AddGroup G] (a : G) :
(expEquiv a) = exp a
@[simp]
theorem WithZero.logEquiv_apply {G : Type u_5} [AddGroup G] (x : (WithZero (Multiplicative G))ˣ) :
logEquiv x = (↑x).log
theorem WithZero.logEquiv_unitsMk0 {G : Type u_5} [AddGroup G] (x : WithZero (Multiplicative G)) (hx : x 0) :
theorem WithZero.exp_sub {G : Type u_5} [AddGroup G] (a b : G) :
exp (a - b) = exp a / exp b
theorem WithZero.log_div {G : Type u_5} [AddGroup G] {x y : WithZero (Multiplicative G)} (hx : x 0) (hy : y 0) :
(x / y).log = x.log - y.log
theorem WithZero.exp_neg {G : Type u_5} [AddGroup G] (a : G) :
exp (-a) = (exp a)⁻¹
theorem WithZero.exp_zsmul {G : Type u_5} [AddGroup G] (n : ) (a : G) :
exp (n a) = exp a ^ n
theorem WithZero.log_zpow {G : Type u_5} [AddGroup G] (x : WithZero (Multiplicative G)) (n : ) :
(x ^ n).log = n x.log
theorem MonoidWithZeroHom.map_eq_zero_iff {G₀ : Type u_1} {G₀' : Type u_2} [GroupWithZero G₀] [MulZeroOneClass G₀'] [Nontrivial G₀'] {f : G₀ →*₀ G₀'} {x : G₀} :
f x = 0 x = 0
@[simp]
theorem MonoidWithZeroHom.one_apply_val_unit {M₀ : Type u_1} {N₀ : Type u_2} [MonoidWithZero M₀] [MulZeroOneClass N₀] [DecidablePred fun (x : M₀) => x = 0] [Nontrivial M₀] [NoZeroDivisors M₀] (x : M₀ˣ) :
1 x = 1
@[simp]
theorem MonoidWithZeroHom.apply_one_apply_eq {M₀ : Type u_1} {N₀ : Type u_2} {G₀ : Type u_3} [MulZeroOneClass M₀] [Nontrivial M₀] [NoZeroDivisors M₀] [MulZeroOneClass N₀] [MulZeroOneClass G₀] [DecidablePred fun (x : M₀) => x = 0] (f : N₀ →*₀ G₀) (x : M₀) :
f (1 x) = 1 x

The trivial group-with-zero hom is absorbing for composition.

@[simp]
theorem MonoidWithZeroHom.comp_one {M₀ : Type u_1} {N₀ : Type u_2} {G₀ : Type u_3} [MulZeroOneClass M₀] [Nontrivial M₀] [NoZeroDivisors M₀] [MulZeroOneClass N₀] [MulZeroOneClass G₀] [DecidablePred fun (x : M₀) => x = 0] (f : N₀ →*₀ G₀) :
f.comp 1 = 1

The trivial group-with-zero hom is absorbing for composition.