Definition and notation for extended natural numbers #
Extended natural numbers ℕ∞ = WithTop ℕ
.
Instances For
- Cardinal.instCanLiftENatOfENatLeAleph0
- Cardinal.instCoeENat
- ENat.canLift
- ENat.instCanonicallyOrderedAdd
- ENat.instCharZero
- ENat.instCountable
- ENat.instIsOrderedRing
- ENat.instNatCast
- ENat.instNoZeroDivisors
- ENat.instOrderBot
- ENat.instOrderTop
- ENat.instOrderedSub
- ENat.instSuccAddOrder
- ENat.instSuccOrder
- ENat.instWellFoundedLT
- ENat.instWellFoundedRelation
- instENatBot
- instENatCommSemiring
- instENatInhabited
- instENatLinearOrder
- instENatLinearOrderedAddCommMonoidWithTop
- instENatNontrivial
- instENatSub
- instENatTop
- instENatWellFoundedRelation
- instENatZero
Extended natural numbers ℕ∞ = WithTop ℕ
.
Equations
- «termℕ∞» = Lean.ParserDescr.node `«termℕ∞» 1024 (Lean.ParserDescr.symbol "ℕ∞")
Recursor for ENat
using the preferred forms ⊤
and ↑a
.
Equations
- ENat.recTopCoe top coe none = top
- ENat.recTopCoe top coe (some a) = coe a