Documentation

Mathlib.Data.Int.GCD

Extended GCD and divisibility over ℤ #

Main definitions #

Main statements #

Tags #

Bézout's lemma, Bezout's lemma

Extended Euclidean algorithm #

@[irreducible]
def Nat.xgcdAux :
× ×

Helper function for the extended GCD algorithm (Nat.xgcd).

Equations
@[simp]
theorem Nat.xgcd_zero_left {s t : } {r' : } {s' t' : } :
xgcdAux 0 s t r' s' t' = (r', s', t')
theorem Nat.xgcdAux_rec {r : } {s t : } {r' : } {s' t' : } (h : 0 < r) :
r.xgcdAux s t r' s' t' = (r' % r).xgcdAux (s' - r' / r * s) (t' - r' / r * t) r s t
def Nat.xgcd (x y : ) :

Use the extended GCD algorithm to generate the a and b values satisfying gcd x y = x * a + y * b.

Equations
def Nat.gcdA (x y : ) :

The extended GCD a value in the equation gcd x y = x * a + y * b.

Equations
def Nat.gcdB (x y : ) :

The extended GCD b value in the equation gcd x y = x * a + y * b.

Equations
@[simp]
theorem Nat.gcdA_zero_left {s : } :
gcdA 0 s = 0
@[simp]
theorem Nat.gcdB_zero_left {s : } :
gcdB 0 s = 1
@[simp]
theorem Nat.gcdA_zero_right {s : } (h : s 0) :
s.gcdA 0 = 1
@[simp]
theorem Nat.gcdB_zero_right {s : } (h : s 0) :
s.gcdB 0 = 0
@[simp]
theorem Nat.xgcdAux_fst (x y : ) (s t s' t' : ) :
(x.xgcdAux s t y s' t').1 = x.gcd y
theorem Nat.xgcdAux_val (x y : ) :
x.xgcdAux 1 0 y 0 1 = (x.gcd y, x.xgcd y)
theorem Nat.xgcd_val (x y : ) :
x.xgcd y = (x.gcdA y, x.gcdB y)
theorem Nat.xgcdAux_P (x y : ) {r r' : } {s t s' t' : } :
Nat.P✝ x y (r, s, t)Nat.P✝ x y (r', s', t')Nat.P✝ x y (r.xgcdAux s t r' s' t')
theorem Nat.gcd_eq_gcd_ab (x y : ) :
(x.gcd y) = x * x.gcdA y + y * x.gcdB y

Bézout's lemma: given x y : ℕ, gcd x y = x * a + y * b, where a = gcd_a x y and b = gcd_b x y are computed by the extended Euclidean algorithm.

theorem Nat.exists_mul_emod_eq_gcd {k n : } (hk : n.gcd k < k) :
(m : ), n * m % k = n.gcd k
theorem Nat.exists_mul_emod_eq_one_of_coprime {k n : } (hkn : n.Coprime k) (hk : 1 < k) :
(m : ), n * m % k = 1

Divisibility over ℤ #

theorem Int.gcd_def (i j : ) :
def Int.gcdA :

The extended GCD a value in the equation gcd x y = x * a + y * b.

Equations
def Int.gcdB :

The extended GCD b value in the equation gcd x y = x * a + y * b.

Equations
theorem Int.gcd_eq_gcd_ab (x y : ) :
(x.gcd y) = x * x.gcdA y + y * x.gcdB y

Bézout's lemma

theorem Int.lcm_def (i j : ) :
@[deprecated Int.lcm_natCast_natCast (since := "2025-04-04")]
theorem Int.coe_nat_lcm (a b : ) :
(↑a).lcm b = a.lcm b

Alias of Int.lcm_natCast_natCast.

theorem Int.gcd_div {a b c : } (ha : c a) (hb : c b) :
(a / c).gcd (b / c) = a.gcd b / c.natAbs

Alias of Int.gcd_ediv.

theorem Int.gcd_div_gcd_div_gcd {i j : } (h : 0 < i.gcd j) :
(i / (i.gcd j)).gcd (j / (i.gcd j)) = 1

Alias of Int.gcd_ediv_gcd_ediv_gcd.

@[deprecated Int.gcd_dvd_gcd_mul_left_left (since := "2025-04-04")]
theorem Int.gcd_dvd_gcd_mul_left (a b c : ) :
a.gcd b (c * a).gcd b

Alias of Int.gcd_dvd_gcd_mul_left_left.

@[deprecated Int.gcd_dvd_gcd_mul_right_left (since := "2025-04-04")]
theorem Int.gcd_dvd_gcd_mul_right (a b c : ) :
a.gcd b (a * c).gcd b

Alias of Int.gcd_dvd_gcd_mul_right_left.

theorem Int.gcd_eq_one_of_gcd_mul_right_eq_one_left {a : } {m n : } (h : a.gcd (m * n) = 1) :
a.gcd m = 1

If gcd a (m * n) = 1, then gcd a m = 1.

theorem Int.gcd_eq_one_of_gcd_mul_right_eq_one_right {a : } {m n : } (h : a.gcd (m * n) = 1) :
a.gcd n = 1

If gcd a (m * n) = 1, then gcd a n = 1.

theorem Int.ne_zero_of_gcd {x y : } (hc : x.gcd y 0) :
x 0 y 0
theorem Int.exists_gcd_one {m n : } (H : 0 < m.gcd n) :
(m' : ), (n' : ), m'.gcd n' = 1 m = m' * (m.gcd n) n = n' * (m.gcd n)
theorem Int.exists_gcd_one' {m n : } (H : 0 < m.gcd n) :
(g : ), (m' : ), (n' : ), 0 < g m'.gcd n' = 1 m = m' * g n = n' * g
theorem Int.gcd_dvd_iff {a b : } {n : } :
a.gcd b n (x : ), (y : ), n = a * x + b * y
theorem Int.gcd_greatest {a b d : } (hd_pos : 0 d) (hda : d a) (hdb : d b) (hd : ∀ (e : ), e ae be d) :
d = (a.gcd b)
theorem Int.dvd_of_dvd_mul_left_of_gcd_one {a b c : } (habc : a b * c) (hab : a.gcd c = 1) :
a b

Euclid's lemma: if a ∣ b * c and gcd a c = 1 then a ∣ b. Compare with IsCoprime.dvd_of_dvd_mul_left and UniqueFactorizationMonoid.dvd_of_dvd_mul_left_of_no_prime_factors

theorem Int.dvd_of_dvd_mul_right_of_gcd_one {a b c : } (habc : a b * c) (hab : a.gcd b = 1) :
a c

Euclid's lemma: if a ∣ b * c and gcd a b = 1 then a ∣ c. Compare with IsCoprime.dvd_of_dvd_mul_right and UniqueFactorizationMonoid.dvd_of_dvd_mul_right_of_no_prime_factors

theorem Int.gcd_least_linear {a b : } (ha : a 0) :
IsLeast {n : | 0 < n (x : ), (y : ), n = a * x + b * y} (a.gcd b)

For nonzero integers a and b, gcd a b is the smallest positive natural number that can be written in the form a * x + b * y for some pair of integers x and y

theorem pow_gcd_eq_one {M : Type u_1} [Monoid M] (x : M) {m n : } (hm : x ^ m = 1) (hn : x ^ n = 1) :
x ^ m.gcd n = 1
theorem gcd_nsmul_eq_zero {M : Type u_1} [AddMonoid M] (x : M) {m n : } (hm : m x = 0) (hn : n x = 0) :
m.gcd n x = 0
theorem Commute.pow_eq_pow_iff_of_coprime {α : Type u_1} [GroupWithZero α] {a b : α} {m n : } (hab : Commute a b) (hmn : m.Coprime n) :
a ^ m = b ^ n (c : α), a = c ^ n b = c ^ m
theorem pow_eq_pow_iff_of_coprime {α : Type u_1} [CommGroupWithZero α] {a b : α} {m n : } (hmn : m.Coprime n) :
a ^ m = b ^ n (c : α), a = c ^ n b = c ^ m
theorem pow_mem_range_pow_of_coprime {α : Type u_1} [CommGroupWithZero α] {m n : } (hmn : m.Coprime n) (a : α) :
(a ^ m Set.range fun (x : α) => x ^ n) a Set.range fun (x : α) => x ^ n