Documentation

Mathlib.Order.Interval.Set.Defs

Intervals #

In any preorder α, we define intervals (which on each side can be either infinite, open, or closed) using the following naming conventions:

Each interval has the name I + letter for left side + letter for right side. For instance, Ioc a b denotes the interval (a, b].

We also define a typeclass Set.OrdConnected saying that a set includes Set.Icc a b whenever it contains both a and b.

def Set.Ioo {α : Type u_1} [Preorder α] (a b : α) :
Set α

Ioo a b is the left-open right-open interval (a,b).

Equations
Instances For
@[simp]
theorem Set.mem_Ioo {α : Type u_1} [Preorder α] {a b x : α} :
x Ioo a b a < x x < b
theorem Set.Ioo_def {α : Type u_1} [Preorder α] (a b : α) :
{x : α | a < x x < b} = Ioo a b
def Set.Ico {α : Type u_1} [Preorder α] (a b : α) :
Set α

Ico a b is the left-closed right-open interval [a,b).

Equations
Instances For
@[simp]
theorem Set.mem_Ico {α : Type u_1} [Preorder α] {a b x : α} :
x Ico a b a x x < b
theorem Set.Ico_def {α : Type u_1} [Preorder α] (a b : α) :
{x : α | a x x < b} = Ico a b
def Set.Iio {α : Type u_1} [Preorder α] (b : α) :
Set α

Iio b is the left-infinite right-open interval (,b).

Equations
Instances For
@[simp]
theorem Set.mem_Iio {α : Type u_1} [Preorder α] {b x : α} :
x Iio b x < b
theorem Set.Iio_def {α : Type u_1} [Preorder α] (a : α) :
{x : α | x < a} = Iio a
def Set.Icc {α : Type u_1} [Preorder α] (a b : α) :
Set α

Icc a b is the left-closed right-closed interval [a,b].

Equations
Instances For
@[simp]
theorem Set.mem_Icc {α : Type u_1} [Preorder α] {a b x : α} :
x Icc a b a x x b
theorem Set.Icc_def {α : Type u_1} [Preorder α] (a b : α) :
{x : α | a x x b} = Icc a b
def Set.Iic {α : Type u_1} [Preorder α] (b : α) :
Set α

Iic b is the left-infinite right-closed interval (,b].

Equations
Instances For
@[simp]
theorem Set.mem_Iic {α : Type u_1} [Preorder α] {b x : α} :
x Iic b x b
theorem Set.Iic_def {α : Type u_1} [Preorder α] (b : α) :
{x : α | x b} = Iic b
def Set.Ioc {α : Type u_1} [Preorder α] (a b : α) :
Set α

Ioc a b is the left-open right-closed interval (a,b].

Equations
Instances For
@[simp]
theorem Set.mem_Ioc {α : Type u_1} [Preorder α] {a b x : α} :
x Ioc a b a < x x b
theorem Set.Ioc_def {α : Type u_1} [Preorder α] (a b : α) :
{x : α | a < x x b} = Ioc a b
def Set.Ici {α : Type u_1} [Preorder α] (a : α) :
Set α

Ici a is the left-closed right-infinite interval [a,).

Equations
Instances For
@[simp]
theorem Set.mem_Ici {α : Type u_1} [Preorder α] {a x : α} :
x Ici a a x
theorem Set.Ici_def {α : Type u_1} [Preorder α] (a : α) :
{x : α | a x} = Ici a
def Set.Ioi {α : Type u_1} [Preorder α] (a : α) :
Set α

Ioi a is the left-open right-infinite interval (a,).

Equations
Instances For
@[simp]
theorem Set.mem_Ioi {α : Type u_1} [Preorder α] {a x : α} :
x Ioi a a < x
theorem Set.Ioi_def {α : Type u_1} [Preorder α] (a : α) :
{x : α | a < x} = Ioi a
class Set.OrdConnected {α : Type u_1} [Preorder α] (s : Set α) :

We say that a set s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]]. If α is a DenselyOrdered ConditionallyCompleteLinearOrder with the OrderTopology, then this condition is equivalent to IsPreconnected s. If α is a LinearOrderedField, then this condition is also equivalent to Convex α s.

  • out' x : α (hx : x s) y : α (hy : y s) : Icc x y s

    s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]].

Instances