Documentation

Mathlib.Order.Lattice

(Semi-)lattices #

Semilattices are partially ordered sets with join (least upper bound, or sup) or meet (greatest lower bound, or inf) operations. Lattices are posets that are both join-semilattices and meet-semilattices.

Distributive lattices are lattices which satisfy any of four equivalent distributivity properties, of sup over inf, on the left or on the right.

Main declarations #

Notations #

TODO #

Tags #

semilattice, lattice

See if the term is a ⊂ b and the goal is a ⊆ b.

Equations

Join-semilattices #

class SemilatticeSup (α : Type u) extends PartialOrder α :

A SemilatticeSup is a join-semilattice, that is, a partial order with a join (a.k.a. lub / least upper bound, sup / supremum) operation which is the least element larger than both factors.

  • le : ααProp
  • lt : ααProp
  • le_refl (a : α) : a a
  • le_trans (a b c : α) : a bb ca c
  • lt_iff_le_not_le (a b : α) : a < b a b ¬b a
  • le_antisymm (a b : α) : a bb aa = b
  • sup : ααα

    The binary supremum, used to derive Max α

  • le_sup_left (a b : α) : a sup a b

    The supremum is an upper bound on the first argument

  • le_sup_right (a b : α) : b sup a b

    The supremum is an upper bound on the second argument

  • sup_le (a b c : α) : a cb csup a b c

    The supremum is the least upper bound

Instances
instance SemilatticeSup.toMax {α : Type u} [SemilatticeSup α] :
Max α
Equations
def SemilatticeSup.mk' {α : Type u_1} [Max α] (sup_comm : ∀ (a b : α), ab = ba) (sup_assoc : ∀ (a b c : α), abc = a(bc)) (sup_idem : ∀ (a : α), aa = a) :

A type with a commutative, associative and idempotent binary sup operation has the structure of a join-semilattice.

The partial order is defined so that a ≤ b unfolds to a ⊔ b = b; cf. sup_eq_right.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem le_sup_left {α : Type u} [SemilatticeSup α] {a b : α} :
a ab
@[simp]
theorem le_sup_right {α : Type u} [SemilatticeSup α] {a b : α} :
b ab
theorem le_sup_of_le_left {α : Type u} [SemilatticeSup α] {a b c : α} (h : c a) :
c ab
theorem le_sup_of_le_right {α : Type u} [SemilatticeSup α] {a b c : α} (h : c b) :
c ab
theorem lt_sup_of_lt_left {α : Type u} [SemilatticeSup α] {a b c : α} (h : c < a) :
c < ab
theorem lt_sup_of_lt_right {α : Type u} [SemilatticeSup α] {a b c : α} (h : c < b) :
c < ab
theorem sup_le {α : Type u} [SemilatticeSup α] {a b c : α} :
a cb cab c
@[simp]
theorem sup_le_iff {α : Type u} [SemilatticeSup α] {a b c : α} :
ab c a c b c
@[simp]
theorem sup_eq_left {α : Type u} [SemilatticeSup α] {a b : α} :
ab = a b a
@[simp]
theorem sup_eq_right {α : Type u} [SemilatticeSup α] {a b : α} :
ab = b a b
@[simp]
theorem left_eq_sup {α : Type u} [SemilatticeSup α] {a b : α} :
a = ab b a
@[simp]
theorem right_eq_sup {α : Type u} [SemilatticeSup α] {a b : α} :
b = ab a b
@[simp]
theorem sup_of_le_left {α : Type u} [SemilatticeSup α] {a b : α} :
b aab = a

Alias of the reverse direction of sup_eq_left.

@[simp]
theorem sup_of_le_right {α : Type u} [SemilatticeSup α] {a b : α} :
a bab = b

Alias of the reverse direction of sup_eq_right.

theorem le_of_sup_eq {α : Type u} [SemilatticeSup α] {a b : α} :
ab = ba b

Alias of the forward direction of sup_eq_right.

@[simp]
theorem left_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} :
a < ab ¬b a
@[simp]
theorem right_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} :
b < ab ¬a b
theorem left_or_right_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} (h : a b) :
a < ab b < ab
theorem le_iff_exists_sup {α : Type u} [SemilatticeSup α] {a b : α} :
a b (c : α), b = ac
theorem sup_le_sup {α : Type u} [SemilatticeSup α] {a b c d : α} (h₁ : a b) (h₂ : c d) :
ac bd
theorem sup_le_sup_left {α : Type u} [SemilatticeSup α] {a b : α} (h₁ : a b) (c : α) :
ca cb
theorem sup_le_sup_right {α : Type u} [SemilatticeSup α] {a b : α} (h₁ : a b) (c : α) :
ac bc
theorem sup_idem {α : Type u} [SemilatticeSup α] (a : α) :
aa = a
instance instIdempotentOpMax_mathlib {α : Type u} [SemilatticeSup α] :
Std.IdempotentOp fun (x1 x2 : α) => x1x2
theorem sup_comm {α : Type u} [SemilatticeSup α] (a b : α) :
ab = ba
instance instCommutativeMax_mathlib {α : Type u} [SemilatticeSup α] :
Std.Commutative fun (x1 x2 : α) => x1x2
theorem sup_assoc {α : Type u} [SemilatticeSup α] (a b c : α) :
abc = a(bc)
instance instAssociativeMax_mathlib {α : Type u} [SemilatticeSup α] :
Std.Associative fun (x1 x2 : α) => x1x2
theorem sup_left_right_swap {α : Type u} [SemilatticeSup α] (a b c : α) :
abc = cba
theorem sup_left_idem {α : Type u} [SemilatticeSup α] (a b : α) :
a(ab) = ab
theorem sup_right_idem {α : Type u} [SemilatticeSup α] (a b : α) :
abb = ab
theorem sup_left_comm {α : Type u} [SemilatticeSup α] (a b c : α) :
a(bc) = b(ac)
theorem sup_right_comm {α : Type u} [SemilatticeSup α] (a b c : α) :
abc = acb
theorem sup_sup_sup_comm {α : Type u} [SemilatticeSup α] (a b c d : α) :
ab(cd) = ac(bd)
theorem sup_sup_distrib_left {α : Type u} [SemilatticeSup α] (a b c : α) :
a(bc) = ab(ac)
theorem sup_sup_distrib_right {α : Type u} [SemilatticeSup α] (a b c : α) :
abc = ac(bc)
theorem sup_congr_left {α : Type u} [SemilatticeSup α] {a b c : α} (hb : b ac) (hc : c ab) :
ab = ac
theorem sup_congr_right {α : Type u} [SemilatticeSup α] {a b c : α} (ha : a bc) (hb : b ac) :
ac = bc
theorem sup_eq_sup_iff_left {α : Type u} [SemilatticeSup α] {a b c : α} :
ab = ac b ac c ab
theorem sup_eq_sup_iff_right {α : Type u} [SemilatticeSup α] {a b c : α} :
ac = bc a bc b ac
theorem Ne.lt_sup_or_lt_sup {α : Type u} [SemilatticeSup α] {a b : α} (hab : a b) :
a < ab b < ab
theorem Monotone.forall_le_of_antitone {α : Type u} [SemilatticeSup α] {β : Type u_1} [Preorder β] {f g : αβ} (hf : Monotone f) (hg : Antitone g) (h : f g) (m n : α) :
f m g n

If f is monotone, g is antitone, and f ≤ g, then for all a, b we have f a ≤ g b.

theorem SemilatticeSup.ext_sup {α : Type u_1} {A B : SemilatticeSup α} (H : ∀ (x y : α), x y x y) (x y : α) :
xy = xy
theorem SemilatticeSup.ext {α : Type u_1} {A B : SemilatticeSup α} (H : ∀ (x y : α), x y x y) :
A = B
theorem ite_le_sup {α : Type u} [SemilatticeSup α] (s s' : α) (P : Prop) [Decidable P] :
(if P then s else s') ss'

Meet-semilattices #

class SemilatticeInf (α : Type u) extends PartialOrder α :

A SemilatticeInf is a meet-semilattice, that is, a partial order with a meet (a.k.a. glb / greatest lower bound, inf / infimum) operation which is the greatest element smaller than both factors.

  • le : ααProp
  • lt : ααProp
  • le_refl (a : α) : a a
  • le_trans (a b c : α) : a bb ca c
  • lt_iff_le_not_le (a b : α) : a < b a b ¬b a
  • le_antisymm (a b : α) : a bb aa = b
  • inf : ααα

    The binary infimum, used to derive Min α

  • inf_le_left (a b : α) : inf a b a

    The infimum is a lower bound on the first argument

  • inf_le_right (a b : α) : inf a b b

    The infimum is a lower bound on the second argument

  • le_inf (a b c : α) : a ba ca inf b c

    The infimum is the greatest lower bound

Instances
instance SemilatticeInf.toMin {α : Type u} [SemilatticeInf α] :
Min α
Equations
Equations
Equations
@[simp]
theorem inf_le_left {α : Type u} [SemilatticeInf α] {a b : α} :
ab a
@[simp]
theorem inf_le_right {α : Type u} [SemilatticeInf α] {a b : α} :
ab b
theorem le_inf {α : Type u} [SemilatticeInf α] {a b c : α} :
a ba ca bc
theorem inf_le_of_left_le {α : Type u} [SemilatticeInf α] {a b c : α} (h : a c) :
ab c
theorem inf_le_of_right_le {α : Type u} [SemilatticeInf α] {a b c : α} (h : b c) :
ab c
theorem inf_lt_of_left_lt {α : Type u} [SemilatticeInf α] {a b c : α} (h : a < c) :
ab < c
theorem inf_lt_of_right_lt {α : Type u} [SemilatticeInf α] {a b c : α} (h : b < c) :
ab < c
@[simp]
theorem le_inf_iff {α : Type u} [SemilatticeInf α] {a b c : α} :
a bc a b a c
@[simp]
theorem inf_eq_left {α : Type u} [SemilatticeInf α] {a b : α} :
ab = a a b
@[simp]
theorem inf_eq_right {α : Type u} [SemilatticeInf α] {a b : α} :
ab = b b a
@[simp]
theorem left_eq_inf {α : Type u} [SemilatticeInf α] {a b : α} :
a = ab a b
@[simp]
theorem right_eq_inf {α : Type u} [SemilatticeInf α] {a b : α} :
b = ab b a
theorem le_of_inf_eq {α : Type u} [SemilatticeInf α] {a b : α} :
ab = aa b

Alias of the forward direction of inf_eq_left.

@[simp]
theorem inf_of_le_left {α : Type u} [SemilatticeInf α] {a b : α} :
a bab = a

Alias of the reverse direction of inf_eq_left.

@[simp]
theorem inf_of_le_right {α : Type u} [SemilatticeInf α] {a b : α} :
b aab = b

Alias of the reverse direction of inf_eq_right.

@[simp]
theorem inf_lt_left {α : Type u} [SemilatticeInf α] {a b : α} :
ab < a ¬a b
@[simp]
theorem inf_lt_right {α : Type u} [SemilatticeInf α] {a b : α} :
ab < b ¬b a
theorem inf_lt_left_or_right {α : Type u} [SemilatticeInf α] {a b : α} (h : a b) :
ab < a ab < b
theorem inf_le_inf {α : Type u} [SemilatticeInf α] {a b c d : α} (h₁ : a b) (h₂ : c d) :
ac bd
theorem inf_le_inf_right {α : Type u} [SemilatticeInf α] (a : α) {b c : α} (h : b c) :
ba ca
theorem inf_le_inf_left {α : Type u} [SemilatticeInf α] (a : α) {b c : α} (h : b c) :
ab ac
theorem inf_idem {α : Type u} [SemilatticeInf α] (a : α) :
aa = a
instance instIdempotentOpMin_mathlib {α : Type u} [SemilatticeInf α] :
Std.IdempotentOp fun (x1 x2 : α) => x1x2
theorem inf_comm {α : Type u} [SemilatticeInf α] (a b : α) :
ab = ba
instance instCommutativeMin_mathlib {α : Type u} [SemilatticeInf α] :
Std.Commutative fun (x1 x2 : α) => x1x2
theorem inf_assoc {α : Type u} [SemilatticeInf α] (a b c : α) :
abc = a(bc)
instance instAssociativeMin_mathlib {α : Type u} [SemilatticeInf α] :
Std.Associative fun (x1 x2 : α) => x1x2
theorem inf_left_right_swap {α : Type u} [SemilatticeInf α] (a b c : α) :
abc = cba
theorem inf_left_idem {α : Type u} [SemilatticeInf α] (a b : α) :
a(ab) = ab
theorem inf_right_idem {α : Type u} [SemilatticeInf α] (a b : α) :
abb = ab
theorem inf_left_comm {α : Type u} [SemilatticeInf α] (a b c : α) :
a(bc) = b(ac)
theorem inf_right_comm {α : Type u} [SemilatticeInf α] (a b c : α) :
abc = acb
theorem inf_inf_inf_comm {α : Type u} [SemilatticeInf α] (a b c d : α) :
ab(cd) = ac(bd)
theorem inf_inf_distrib_left {α : Type u} [SemilatticeInf α] (a b c : α) :
a(bc) = ab(ac)
theorem inf_inf_distrib_right {α : Type u} [SemilatticeInf α] (a b c : α) :
abc = ac(bc)
theorem inf_congr_left {α : Type u} [SemilatticeInf α] {a b c : α} (hb : ac b) (hc : ab c) :
ab = ac
theorem inf_congr_right {α : Type u} [SemilatticeInf α] {a b c : α} (h1 : bc a) (h2 : ac b) :
ac = bc
theorem inf_eq_inf_iff_left {α : Type u} [SemilatticeInf α] {a b c : α} :
ab = ac ac b ab c
theorem inf_eq_inf_iff_right {α : Type u} [SemilatticeInf α] {a b c : α} :
ac = bc bc a ac b
theorem Ne.inf_lt_or_inf_lt {α : Type u} [SemilatticeInf α] {a b : α} :
a bab < a ab < b
theorem SemilatticeInf.ext_inf {α : Type u_1} {A B : SemilatticeInf α} (H : ∀ (x y : α), x y x y) (x y : α) :
xy = xy
theorem SemilatticeInf.ext {α : Type u_1} {A B : SemilatticeInf α} (H : ∀ (x y : α), x y x y) :
A = B
theorem inf_le_ite {α : Type u} [SemilatticeInf α] (s s' : α) (P : Prop) [Decidable P] :
ss' if P then s else s'
def SemilatticeInf.mk' {α : Type u_1} [Min α] (inf_comm : ∀ (a b : α), ab = ba) (inf_assoc : ∀ (a b c : α), abc = a(bc)) (inf_idem : ∀ (a : α), aa = a) :

A type with a commutative, associative and idempotent binary inf operation has the structure of a meet-semilattice.

The partial order is defined so that a ≤ b unfolds to b ⊓ a = a; cf. inf_eq_right.

Equations

Lattices #

class Lattice (α : Type u) extends SemilatticeSup α, SemilatticeInf α :

A lattice is a join-semilattice which is also a meet-semilattice.

Instances
instance OrderDual.instLattice (α : Type u_1) [Lattice α] :
Equations
theorem semilatticeSup_mk'_partialOrder_eq_semilatticeInf_mk'_partialOrder {α : Type u_1} [Max α] [Min α] (sup_comm : ∀ (a b : α), ab = ba) (sup_assoc : ∀ (a b c : α), abc = a(bc)) (sup_idem : ∀ (a : α), aa = a) (inf_comm : ∀ (a b : α), ab = ba) (inf_assoc : ∀ (a b c : α), abc = a(bc)) (inf_idem : ∀ (a : α), aa = a) (sup_inf_self : ∀ (a b : α), aab = a) (inf_sup_self : ∀ (a b : α), a(ab) = a) :
(SemilatticeSup.mk' sup_comm sup_assoc sup_idem).toPartialOrder = (SemilatticeInf.mk' inf_comm inf_assoc inf_idem).toPartialOrder

The partial orders from SemilatticeSup_mk' and SemilatticeInf_mk' agree if sup and inf satisfy the lattice absorption laws sup_inf_self (a ⊔ a ⊓ b = a) and inf_sup_self (a ⊓ (a ⊔ b) = a).

def Lattice.mk' {α : Type u_1} [Max α] [Min α] (sup_comm : ∀ (a b : α), ab = ba) (sup_assoc : ∀ (a b c : α), abc = a(bc)) (inf_comm : ∀ (a b : α), ab = ba) (inf_assoc : ∀ (a b c : α), abc = a(bc)) (sup_inf_self : ∀ (a b : α), aab = a) (inf_sup_self : ∀ (a b : α), a(ab) = a) :

A type with a pair of commutative and associative binary operations which satisfy two absorption laws relating the two operations has the structure of a lattice.

The partial order is defined so that a ≤ b unfolds to a ⊔ b = b; cf. sup_eq_right.

Equations
  • One or more equations did not get rendered due to their size.
theorem inf_le_sup {α : Type u} [Lattice α] {a b : α} :
ab ab
theorem sup_le_inf {α : Type u} [Lattice α] {a b : α} :
ab ab a = b
@[simp]
theorem inf_eq_sup {α : Type u} [Lattice α] {a b : α} :
ab = ab a = b
@[simp]
theorem sup_eq_inf {α : Type u} [Lattice α] {a b : α} :
ab = ab a = b
@[simp]
theorem inf_lt_sup {α : Type u} [Lattice α] {a b : α} :
ab < ab a b
theorem inf_eq_and_sup_eq_iff {α : Type u} [Lattice α] {a b c : α} :
ab = c ab = c a = c b = c

Distributivity laws #

theorem sup_inf_le {α : Type u} [Lattice α] {a b c : α} :
abc (ab)(ac)
theorem le_inf_sup {α : Type u} [Lattice α] {a b c : α} :
abac a(bc)
theorem inf_sup_self {α : Type u} [Lattice α] {a b : α} :
a(ab) = a
theorem sup_inf_self {α : Type u} [Lattice α] {a b : α} :
aab = a
theorem sup_eq_iff_inf_eq {α : Type u} [Lattice α] {a b : α} :
ab = b ab = a
theorem Lattice.ext {α : Type u_1} {A B : Lattice α} (H : ∀ (x y : α), x y x y) :
A = B

Distributive lattices #

class DistribLattice (α : Type u_1) extends Lattice α :
Type u_1

A distributive lattice is a lattice that satisfies any of four equivalent distributive properties (of sup over inf or inf over sup, on the left or right).

The definition here chooses le_sup_inf: (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ (y ⊓ z). To prove distributivity from the dual law, use DistribLattice.of_inf_sup_le.

A classic example of a distributive lattice is the lattice of subsets of a set, and in fact this example is generic in the sense that every distributive lattice is realizable as a sublattice of a powerset lattice.

Instances
theorem le_sup_inf {α : Type u} [DistribLattice α] {x y z : α} :
(xy)(xz) xyz
theorem sup_inf_left {α : Type u} [DistribLattice α] (a b c : α) :
abc = (ab)(ac)
theorem sup_inf_right {α : Type u} [DistribLattice α] (a b c : α) :
abc = (ac)(bc)
theorem inf_sup_left {α : Type u} [DistribLattice α] (a b c : α) :
a(bc) = abac
Equations
theorem inf_sup_right {α : Type u} [DistribLattice α] (a b c : α) :
(ab)c = acbc
theorem le_of_inf_le_sup_le {α : Type u} [DistribLattice α] {x y z : α} (h₁ : xz yz) (h₂ : xz yz) :
x y
theorem eq_of_inf_eq_sup_eq {α : Type u} [DistribLattice α] {a b c : α} (h₁ : ba = ca) (h₂ : ba = ca) :
b = c
@[reducible, inline]
abbrev DistribLattice.ofInfSupLe {α : Type u} [Lattice α] (inf_sup_le : ∀ (a b c : α), a(bc) abac) :

Prove distributivity of an existing lattice from the dual distributive law.

Equations

Lattices derived from linear orders #

@[instance 100]
instance LinearOrder.toLattice {α : Type u} [LinearOrder α] :
Equations
@[deprecated "is syntactical" (since := "2024-11-13")]
theorem sup_eq_max {α : Type u} [LinearOrder α] {a b : α} :
max a b = max a b
@[deprecated "is syntactical" (since := "2024-11-13")]
theorem inf_eq_min {α : Type u} [LinearOrder α] {a b : α} :
min a b = min a b
theorem sup_ind {α : Type u} [LinearOrder α] (a b : α) {p : αProp} (ha : p a) (hb : p b) :
p (max a b)
@[simp]
theorem le_sup_iff {α : Type u} [LinearOrder α] {a b c : α} :
a max b c a b a c
@[simp]
theorem lt_sup_iff {α : Type u} [LinearOrder α] {a b c : α} :
a < max b c a < b a < c
@[simp]
theorem sup_lt_iff {α : Type u} [LinearOrder α] {a b c : α} :
max b c < a b < a c < a
theorem inf_ind {α : Type u} [LinearOrder α] (a b : α) {p : αProp} :
p ap bp (min a b)
@[simp]
theorem inf_le_iff {α : Type u} [LinearOrder α] {a b c : α} :
min b c a b a c a
@[simp]
theorem inf_lt_iff {α : Type u} [LinearOrder α] {a b c : α} :
min b c < a b < a c < a
@[simp]
theorem lt_inf_iff {α : Type u} [LinearOrder α] {a b c : α} :
a < min b c a < b a < c
theorem max_max_max_comm {α : Type u} [LinearOrder α] (a b c d : α) :
max (max a b) (max c d) = max (max a c) (max b d)
theorem min_min_min_comm {α : Type u} [LinearOrder α] (a b c d : α) :
min (min a b) (min c d) = min (min a c) (min b d)
theorem sup_eq_maxDefault {α : Type u} [SemilatticeSup α] [DecidableLE α] [IsTotal α fun (x1 x2 : α) => x1 x2] :
(fun (x1 x2 : α) => x1x2) = maxDefault
theorem inf_eq_minDefault {α : Type u} [SemilatticeInf α] [DecidableLE α] [IsTotal α fun (x1 x2 : α) => x1 x2] :
(fun (x1 x2 : α) => x1x2) = minDefault
@[reducible, inline]
abbrev Lattice.toLinearOrder (α : Type u) [Lattice α] [DecidableEq α] [DecidableLE α] [DecidableLT α] [IsTotal α fun (x1 x2 : α) => x1 x2] :

A lattice with total order is a linear order.

See note [reducible non-instances].

Equations
  • One or more equations did not get rendered due to their size.
@[instance 100]
Equations

Dual order #

@[simp]
theorem ofDual_inf {α : Type u} [Max α] (a b : αᵒᵈ) :
@[simp]
theorem ofDual_sup {α : Type u} [Min α] (a b : αᵒᵈ) :
@[simp]
theorem toDual_inf {α : Type u} [Min α] (a b : α) :
@[simp]
theorem toDual_sup {α : Type u} [Max α] (a b : α) :
@[simp]
@[simp]
@[simp]
theorem toDual_min {α : Type u} [LinearOrder α] (a b : α) :
@[simp]
theorem toDual_max {α : Type u} [LinearOrder α] (a b : α) :

Function lattices #

instance Pi.instMaxForall_mathlib {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Max (α' i)] :
Max ((i : ι) → α' i)
Equations
@[simp]
theorem Pi.sup_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Max (α' i)] (f g : (i : ι) → α' i) (i : ι) :
max f g i = f ig i
theorem Pi.sup_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Max (α' i)] (f g : (i : ι) → α' i) :
fg = fun (i : ι) => f ig i
instance Pi.instMinForall_mathlib {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Min (α' i)] :
Min ((i : ι) → α' i)
Equations
@[simp]
theorem Pi.inf_apply {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Min (α' i)] (f g : (i : ι) → α' i) (i : ι) :
min f g i = f ig i
theorem Pi.inf_def {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Min (α' i)] (f g : (i : ι) → α' i) :
fg = fun (i : ι) => f ig i
instance Pi.instSemilatticeSup {ι : Type u_1} {α' : ιType u_2} [(i : ι) → SemilatticeSup (α' i)] :
SemilatticeSup ((i : ι) → α' i)
Equations
instance Pi.instSemilatticeInf {ι : Type u_1} {α' : ιType u_2} [(i : ι) → SemilatticeInf (α' i)] :
SemilatticeInf ((i : ι) → α' i)
Equations
instance Pi.instLattice {ι : Type u_1} {α' : ιType u_2} [(i : ι) → Lattice (α' i)] :
Lattice ((i : ι) → α' i)
Equations
instance Pi.instDistribLattice {ι : Type u_1} {α' : ιType u_2} [(i : ι) → DistribLattice (α' i)] :
DistribLattice ((i : ι) → α' i)
Equations
theorem Function.update_sup {ι : Type u_1} {π : ιType u_2} [DecidableEq ι] [(i : ι) → SemilatticeSup (π i)] (f : (i : ι) → π i) (i : ι) (a b : π i) :
update f i (ab) = update f i aupdate f i b
theorem Function.update_inf {ι : Type u_1} {π : ιType u_2} [DecidableEq ι] [(i : ι) → SemilatticeInf (π i)] (f : (i : ι) → π i) (i : ι) (a b : π i) :
update f i (ab) = update f i aupdate f i b

Monotone functions and lattices #

theorem Monotone.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :
Monotone (fg)

Pointwise supremum of two monotone functions is a monotone function.

theorem Monotone.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :
Monotone (fg)

Pointwise infimum of two monotone functions is a monotone function.

theorem Monotone.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :
Monotone fun (x : α) => max (f x) (g x)

Pointwise maximum of two monotone functions is a monotone function.

theorem Monotone.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Monotone f) (hg : Monotone g) :
Monotone fun (x : α) => min (f x) (g x)

Pointwise minimum of two monotone functions is a monotone function.

theorem Monotone.le_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeSup β] {f : αβ} (h : Monotone f) (x y : α) :
f xf y f (xy)
theorem Monotone.map_inf_le {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeInf β] {f : αβ} (h : Monotone f) (x y : α) :
f (xy) f xf y
theorem Monotone.of_map_inf_le_left {α : Type u} {β : Type v} [SemilatticeInf α] [Preorder β] {f : αβ} (h : ∀ (x y : α), f (xy) f x) :
theorem Monotone.of_map_inf_le {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeInf β] {f : αβ} (h : ∀ (x y : α), f (xy) f xf y) :
theorem Monotone.of_map_inf {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeInf β] {f : αβ} (h : ∀ (x y : α), f (xy) = f xf y) :
theorem Monotone.of_left_le_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [Preorder β] {f : αβ} (h : ∀ (x y : α), f x f (xy)) :
theorem Monotone.of_le_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeSup β] {f : αβ} (h : ∀ (x y : α), f xf y f (xy)) :
theorem Monotone.of_map_sup {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeSup β] {f : αβ} (h : ∀ (x y : α), f (xy) = f xf y) :
theorem Monotone.map_sup {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeSup β] {f : αβ} (hf : Monotone f) (x y : α) :
f (max x y) = f xf y
theorem Monotone.map_inf {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeInf β] {f : αβ} (hf : Monotone f) (x y : α) :
f (min x y) = f xf y
theorem MonotoneOn.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
MonotoneOn (fg) s

Pointwise supremum of two monotone functions is a monotone function.

theorem MonotoneOn.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
MonotoneOn (fg) s

Pointwise infimum of two monotone functions is a monotone function.

theorem MonotoneOn.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
MonotoneOn (fun (x : α) => max (f x) (g x)) s

Pointwise maximum of two monotone functions is a monotone function.

theorem MonotoneOn.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : MonotoneOn f s) (hg : MonotoneOn g s) :
MonotoneOn (fun (x : α) => min (f x) (g x)) s

Pointwise minimum of two monotone functions is a monotone function.

theorem MonotoneOn.of_map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeInf α] [SemilatticeInf β] (h : ∀ (x : α), x s∀ (y : α), y sf (xy) = f xf y) :
theorem MonotoneOn.of_map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeSup α] [SemilatticeSup β] (h : ∀ (x : α), x s∀ (y : α), y sf (xy) = f xf y) :
theorem MonotoneOn.map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeSup β] (hf : MonotoneOn f s) (hx : x s) (hy : y s) :
f (max x y) = f xf y
theorem MonotoneOn.map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeInf β] (hf : MonotoneOn f s) (hx : x s) (hy : y s) :
f (min x y) = f xf y
theorem Antitone.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :
Antitone (fg)

Pointwise supremum of two monotone functions is a monotone function.

theorem Antitone.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :
Antitone (fg)

Pointwise infimum of two monotone functions is a monotone function.

theorem Antitone.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :
Antitone fun (x : α) => max (f x) (g x)

Pointwise maximum of two monotone functions is a monotone function.

theorem Antitone.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} (hf : Antitone f) (hg : Antitone g) :
Antitone fun (x : α) => min (f x) (g x)

Pointwise minimum of two monotone functions is a monotone function.

theorem Antitone.map_sup_le {α : Type u} {β : Type v} [SemilatticeSup α] [SemilatticeInf β] {f : αβ} (h : Antitone f) (x y : α) :
f (xy) f xf y
theorem Antitone.le_map_inf {α : Type u} {β : Type v} [SemilatticeInf α] [SemilatticeSup β] {f : αβ} (h : Antitone f) (x y : α) :
f xf y f (xy)
theorem Antitone.map_sup {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeInf β] {f : αβ} (hf : Antitone f) (x y : α) :
f (max x y) = f xf y
theorem Antitone.map_inf {α : Type u} {β : Type v} [LinearOrder α] [SemilatticeSup β] {f : αβ} (hf : Antitone f) (x y : α) :
f (min x y) = f xf y
theorem AntitoneOn.sup {α : Type u} {β : Type v} [Preorder α] [SemilatticeSup β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
AntitoneOn (fg) s

Pointwise supremum of two antitone functions is an antitone function.

theorem AntitoneOn.inf {α : Type u} {β : Type v} [Preorder α] [SemilatticeInf β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
AntitoneOn (fg) s

Pointwise infimum of two antitone functions is an antitone function.

theorem AntitoneOn.max {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
AntitoneOn (fun (x : α) => max (f x) (g x)) s

Pointwise maximum of two antitone functions is an antitone function.

theorem AntitoneOn.min {α : Type u} {β : Type v} [Preorder α] [LinearOrder β] {f g : αβ} {s : Set α} (hf : AntitoneOn f s) (hg : AntitoneOn g s) :
AntitoneOn (fun (x : α) => min (f x) (g x)) s

Pointwise minimum of two antitone functions is an antitone function.

theorem AntitoneOn.of_map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeInf α] [SemilatticeSup β] (h : ∀ (x : α), x s∀ (y : α), y sf (xy) = f xf y) :
theorem AntitoneOn.of_map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} [SemilatticeSup α] [SemilatticeInf β] (h : ∀ (x : α), x s∀ (y : α), y sf (xy) = f xf y) :
theorem AntitoneOn.map_sup {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeInf β] (hf : AntitoneOn f s) (hx : x s) (hy : y s) :
f (max x y) = f xf y
theorem AntitoneOn.map_inf {α : Type u} {β : Type v} {f : αβ} {s : Set α} {x y : α} [LinearOrder α] [SemilatticeSup β] (hf : AntitoneOn f s) (hx : x s) (hy : y s) :
f (min x y) = f xf y

Products of (semi-)lattices #

instance Prod.instMax_mathlib (α : Type u) (β : Type v) [Max α] [Max β] :
Max (α × β)
Equations
instance Prod.instMin_mathlib (α : Type u) (β : Type v) [Min α] [Min β] :
Min (α × β)
Equations
@[simp]
theorem Prod.mk_sup_mk (α : Type u) (β : Type v) [Max α] [Max β] (a₁ a₂ : α) (b₁ b₂ : β) :
(a₁, b₁)(a₂, b₂) = (a₁a₂, b₁b₂)
@[simp]
theorem Prod.mk_inf_mk (α : Type u) (β : Type v) [Min α] [Min β] (a₁ a₂ : α) (b₁ b₂ : β) :
(a₁, b₁)(a₂, b₂) = (a₁a₂, b₁b₂)
@[simp]
theorem Prod.fst_sup (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
(pq).fst = p.fstq.fst
@[simp]
theorem Prod.fst_inf (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
(pq).fst = p.fstq.fst
@[simp]
theorem Prod.snd_sup (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
(pq).snd = p.sndq.snd
@[simp]
theorem Prod.snd_inf (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
(pq).snd = p.sndq.snd
@[simp]
theorem Prod.swap_sup (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
(pq).swap = p.swapq.swap
@[simp]
theorem Prod.swap_inf (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
(pq).swap = p.swapq.swap
theorem Prod.sup_def (α : Type u) (β : Type v) [Max α] [Max β] (p q : α × β) :
pq = (p.fstq.fst, p.sndq.snd)
theorem Prod.inf_def (α : Type u) (β : Type v) [Min α] [Min β] (p q : α × β) :
pq = (p.fstq.fst, p.sndq.snd)
instance Prod.instSemilatticeSup (α : Type u) (β : Type v) [SemilatticeSup α] [SemilatticeSup β] :
Equations
instance Prod.instSemilatticeInf (α : Type u) (β : Type v) [SemilatticeInf α] [SemilatticeInf β] :
Equations
instance Prod.instLattice (α : Type u) (β : Type v) [Lattice α] [Lattice β] :
Lattice (α × β)
Equations
instance Prod.instDistribLattice (α : Type u) (β : Type v) [DistribLattice α] [DistribLattice β] :
Equations

Subtypes of (semi-)lattices #

@[reducible, inline]
abbrev Subtype.semilatticeSup {α : Type u} [SemilatticeSup α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (xy)) :
SemilatticeSup { x : α // P x }

A subtype forms a -semilattice if preserves the property. See note [reducible non-instances].

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev Subtype.semilatticeInf {α : Type u} [SemilatticeInf α] {P : αProp} (Pinf : ∀ ⦃x y : α⦄, P xP yP (xy)) :
SemilatticeInf { x : α // P x }

A subtype forms a -semilattice if preserves the property. See note [reducible non-instances].

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev Subtype.lattice {α : Type u} [Lattice α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (xy)) (Pinf : ∀ ⦃x y : α⦄, P xP yP (xy)) :
Lattice { x : α // P x }

A subtype forms a lattice if and preserve the property. See note [reducible non-instances].

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Subtype.coe_sup {α : Type u} [SemilatticeSup α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (xy)) (x y : Subtype P) :
(xy) = xy
@[simp]
theorem Subtype.coe_inf {α : Type u} [SemilatticeInf α] {P : αProp} (Pinf : ∀ ⦃x y : α⦄, P xP yP (xy)) (x y : Subtype P) :
(xy) = xy
@[simp]
theorem Subtype.mk_sup_mk {α : Type u} [SemilatticeSup α] {P : αProp} (Psup : ∀ ⦃x y : α⦄, P xP yP (xy)) {x y : α} (hx : P x) (hy : P y) :
x, hxy, hy = xy,
@[simp]
theorem Subtype.mk_inf_mk {α : Type u} [SemilatticeInf α] {P : αProp} (Pinf : ∀ ⦃x y : α⦄, P xP yP (xy)) {x y : α} (hx : P x) (hy : P y) :
x, hxy, hy = xy,
@[reducible, inline]
abbrev Function.Injective.semilatticeSup {α : Type u} {β : Type v} [Max α] [SemilatticeSup β] (f : αβ) (hf_inj : Injective f) (map_sup : ∀ (a b : α), f (ab) = f af b) :

A type endowed with is a SemilatticeSup, if it admits an injective map that preserves to a SemilatticeSup. See note [reducible non-instances].

Equations
@[reducible, inline]
abbrev Function.Injective.semilatticeInf {α : Type u} {β : Type v} [Min α] [SemilatticeInf β] (f : αβ) (hf_inj : Injective f) (map_inf : ∀ (a b : α), f (ab) = f af b) :

A type endowed with is a SemilatticeInf, if it admits an injective map that preserves to a SemilatticeInf. See note [reducible non-instances].

Equations
@[reducible, inline]
abbrev Function.Injective.lattice {α : Type u} {β : Type v} [Max α] [Min α] [Lattice β] (f : αβ) (hf_inj : Injective f) (map_sup : ∀ (a b : α), f (ab) = f af b) (map_inf : ∀ (a b : α), f (ab) = f af b) :

A type endowed with and is a Lattice, if it admits an injective map that preserves and to a Lattice. See note [reducible non-instances].

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev Function.Injective.distribLattice {α : Type u} {β : Type v} [Max α] [Min α] [DistribLattice β] (f : αβ) (hf_inj : Injective f) (map_sup : ∀ (a b : α), f (ab) = f af b) (map_inf : ∀ (a b : α), f (ab) = f af b) :

A type endowed with and is a DistribLattice, if it admits an injective map that preserves and to a DistribLattice. See note [reducible non-instances].

Equations