TODO: define predicate VariableFree and make mem_iff ∀ φ : Sentence, ℕ ⊧/![⌜φ⌝] ch.val ↔ φ ∈ T
- ch : 𝚫₁.Semisentence 1
- isDelta1 : Arithmetic.HierarchySymbol.Semiformula.ProvablyProperOn (ch T) 𝗜𝚺₁
Instances
@[reducible, inline]
abbrev
LO.FirstOrder.Theory.Δ₁ch
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.Δ₁Class.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Arithmetic.Bootstrapping.Δ₁Class.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.Δ₁Class.proper
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.Δ₁Class.mem_iff_s
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{φ : SyntacticFormula L}
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.Δ₁Class.mem_iff'_s
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{φ : SyntacticFormula L}
:
def
LO.FirstOrder.Theory.Δ₁.ofEq
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T U : Theory L}
(dT : T.Δ₁)
(h : T = U)
:
U.Δ₁
Equations
- dT.ofEq h = { ch := LO.FirstOrder.Theory.Δ₁.ch T, mem_iff := ⋯, isDelta1 := ⋯ }
Instances For
Equations
- LO.FirstOrder.Theory.Δ₁.empty = { ch := ⊥, mem_iff := ⋯, isDelta1 := LO.FirstOrder.Theory.Δ₁.empty._proof_3 }
def
LO.FirstOrder.Theory.Δ₁.singleton
{L : Language}
[L.Encodable]
[L.LORDefinable]
(φ : Sentence L)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.FirstOrder.Theory.Δ₁.singleton_toTDef_ch_val
{L : Language}
[L.Encodable]
[L.LORDefinable]
(φ : Sentence L)
:
def
LO.FirstOrder.Theory.Δ₁.ofList
{L : Language}
[L.Encodable]
[L.LORDefinable]
(l : List (Sentence L))
:
Equations
Instances For
noncomputable def
LO.FirstOrder.Theory.Δ₁.ofFinite
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
(h : Set.Finite T)
:
T.Δ₁
Equations
Instances For
instance
LO.FirstOrder.Theory.Δ₁.instHAdd
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T U : Theory L}
[T.Δ₁]
[U.Δ₁]
:
instance
LO.FirstOrder.Theory.Δ₁.instSingletonSentence
{L : Language}
[L.Encodable]
[L.LORDefinable]
(φ : Sentence L)
:
instance
LO.FirstOrder.Theory.Δ₁.insert
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
{φ : Sentence L}
[d : T.Δ₁]
:
(Insert.insert φ T).Δ₁