Polarity of formulas #
def
LO.FirstOrder.Semiformula.polarity
{L : Language}
{ξ : Type u_1}
{n : ℕ}
:
Semiformula L ξ n → Bool
A polarity of a formula
Equations
- (LO.FirstOrder.Semiformula.rel a a_1).polarity = true
- (LO.FirstOrder.Semiformula.nrel a a_1).polarity = false
- LO.FirstOrder.Semiformula.verum.polarity = true
- LO.FirstOrder.Semiformula.falsum.polarity = false
- (φ.and ψ).polarity = (φ.polarity || ψ.polarity)
- (φ.or ψ).polarity = (φ.polarity && ψ.polarity)
- a.all.polarity = false
- a.exs.polarity = true
Instances For
@[simp]
theorem
LO.FirstOrder.Semiformula.ex_positive_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformula L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformula.ex_negative_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformula L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformula.all_positive_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformula L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformula.all_negative_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformula L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformula.neg_positive_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformula L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformula.neg_negative_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformula L ξ n)
:
theorem
LO.FirstOrder.Semiformula.Positive.eq_true
{L : Language}
{ξ : Type u_1}
{n : ℕ}
{φ : Semiformula L ξ n}
(h : φ.Positive)
:
theorem
LO.FirstOrder.Semiformula.Negative.eq_false
{L : Language}
{ξ : Type u_1}
{n : ℕ}
{φ : Semiformula L ξ n}
(h : φ.Negative)
:
@[simp]
theorem
LO.FirstOrder.Semiformula.polarity_rew
{L : Language}
{ξ₁ : Type u_2}
{n₁ : ℕ}
{ξ₂ : Type u_3}
{n₂ : ℕ}
(ω : Rew L ξ₁ n₁ ξ₂ n₂)
(φ : Semiformula L ξ₁ n₁)
: