Documentation

Foundation.InterpretabilityLogic.Formula.Basic

inductive LO.InterpretabilityLogic.Formula (α : Type u_2) :
Type u_2
Instances For
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      abbrev LO.InterpretabilityLogic.Formula.or {α : Type u_1} (φ ψ : Formula α) :
      Equations
      Instances For
        @[reducible, inline]
        abbrev LO.InterpretabilityLogic.Formula.and {α : Type u_1} (φ ψ : Formula α) :
        Equations
        Instances For
          @[reducible, inline]
          Equations
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            theorem LO.InterpretabilityLogic.Formula.eq_or {α : Type u_1} {φ ψ : Formula α} :
            φ.or ψ = φ ψ
            theorem LO.InterpretabilityLogic.Formula.eq_and {α : Type u_1} {φ ψ : Formula α} :
            φ.and ψ = φ ψ
            theorem LO.InterpretabilityLogic.Formula.eq_imp {α : Type u_1} {φ ψ : Formula α} :
            φ.imp ψ = φ ψ
            theorem LO.InterpretabilityLogic.Formula.eq_rhd {α : Type u_1} {φ ψ : Formula α} :
            φ.rhd ψ = φ ψ
            theorem LO.InterpretabilityLogic.Formula.eq_iff {α : Type u_1} {φ ψ : Formula α} :
            φ ψ = (φ ψ) (ψ φ)
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_and {α : Type u_1} {φ₁ φ₂ ψ₁ ψ₂ : Formula α} :
            φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_or {α : Type u_1} {φ₁ φ₂ ψ₁ ψ₂ : Formula α} :
            φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_imp {α : Type u_1} {φ₁ φ₂ ψ₁ ψ₂ : Formula α} :
            φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_rhd {α : Type u_1} {φ₁ φ₂ ψ₁ ψ₂ : Formula α} :
            φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_neg {α : Type u_1} {φ ψ : Formula α} :
            φ = ψ φ = ψ
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_box {α : Type u_1} {φ ψ : Formula α} :
            φ = ψ φ = ψ
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_dia {α : Type u_1} {φ ψ : Formula α} :
            φ = ψ φ = ψ
            @[simp]
            theorem LO.InterpretabilityLogic.Formula.inj_iff {α : Type u_1} {φ₁ φ₂ ψ₁ ψ₂ : Formula α} :
            φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
            Equations
            Instances For
              def LO.InterpretabilityLogic.Formula.cases' {α : Type u_1} {C : Formula αSort w} (hfalsum : C ) (hatom : (a : α) → C (atom a)) (himp : (φ ψ : Formula α) → C (φ ψ)) (hbox : (φ : Formula α) → C (φ)) (hrhd : (φ ψ : Formula α) → C (φ ψ)) (φ : Formula α) :
              C φ
              Equations
              Instances For
                def LO.InterpretabilityLogic.Formula.rec' {α : Type u_1} {C : Formula αSort w} (hfalsum : C ) (hatom : (a : α) → C (atom a)) (himp : (φ ψ : Formula α) → C φC ψC (φ ψ)) (hbox : (φ : Formula α) → C φC (φ)) (hrhd : (φ ψ : Formula α) → C φC ψC (φ ψ)) (φ : Formula α) :
                C φ
                Equations
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For