Documentation
Foundation
.
InterpretabilityLogic
.
Veltman
.
Logic
.
IL_R_W
Search
return to top
source
Imports
Init
Foundation.InterpretabilityLogic.Veltman.Logic.IL_M₀_W
Foundation.InterpretabilityLogic.Veltman.Logic.IL_R
Imported by
LO
.
InterpretabilityLogic
.
Veltman
.
Frame
.
IsIL_R_W
LO
.
InterpretabilityLogic
.
Veltman
.
FrameClass
.
IL_R_W
LO
.
InterpretabilityLogic
.
Veltman
.
instIsIL_R_WTrivialFrame
LO
.
InterpretabilityLogic
.
IL_R_W
.
Veltman
.
sound
LO
.
InterpretabilityLogic
.
IL_R_W
.
instConsistentFormulaNatLogic
LO
.
InterpretabilityLogic
.
instStrictlyWeakerThanFormulaNatLogicIL_M₀_WIL_R_W
LO
.
InterpretabilityLogic
.
«IL_R ⪱ IL_R_W»
source
class
LO
.
InterpretabilityLogic
.
Veltman
.
Frame
.
IsIL_R_W
(
F
:
Frame
)
extends
F
.
IsIL
,
F
.
HasAxiomW
,
F
.
HasAxiomR
:
Prop
S_J1
{
w
x
:
F
.
World
}
:
w
≺
x
→
x
≺[
w
]
x
S_J4
{
w
x
y
:
F
.
World
}
:
x
≺[
w
]
y
→
w
≺
y
S_J2
{
w
x
y
z
:
F
.
World
}
:
x
≺[
w
]
y
→
y
≺[
w
]
z
→
x
≺[
w
]
z
S_J5
{
w
x
y
:
F
.
World
}
:
w
≺
x
→
x
≺
y
→
x
≺[
w
]
y
S_W
(
w
:
F
.
World
)
:
ConverseWellFounded
fun (
x1
x2
:
F
.
World
) =>
x1
≺≺[
w
]
x2
S_R
{
x
y
z
u
v
:
F
.
World
}
:
x
≺
y
→
y
≺
z
→
z
≺[
x
]
u
→
u
≺
v
→
z
≺[
y
]
v
Instances
source
@[reducible, inline]
abbrev
LO
.
InterpretabilityLogic
.
Veltman
.
FrameClass
.
IL_R_W
:
FrameClass
Equations
LO.InterpretabilityLogic.Veltman.FrameClass.IL_R_W
=
{
F
:
LO.InterpretabilityLogic.Veltman.Frame
|
F
.
IsIL_R_W
}
Instances For
source
instance
LO
.
InterpretabilityLogic
.
Veltman
.
instIsIL_R_WTrivialFrame
:
trivialFrame
.
IsIL_R_W
source
instance
LO
.
InterpretabilityLogic
.
IL_R_W
.
Veltman
.
sound
:
Sound
InterpretabilityLogic.IL_R_W
Veltman.FrameClass.IL_R_W
source
instance
LO
.
InterpretabilityLogic
.
IL_R_W
.
instConsistentFormulaNatLogic
:
Entailment.Consistent
InterpretabilityLogic.IL_R_W
source
instance
LO
.
InterpretabilityLogic
.
instStrictlyWeakerThanFormulaNatLogicIL_M₀_WIL_R_W
:
InterpretabilityLogic.IL_M₀_W
⪱
InterpretabilityLogic.IL_R_W
source
instance
LO
.
InterpretabilityLogic
.
«IL_R ⪱ IL_R_W»
:
InterpretabilityLogic.IL_R
⪱
InterpretabilityLogic.IL_R_W