Documentation

Foundation.Modal.Entailment.KT

instance LO.Modal.Entailment.KT'.instHasAxiomT {S : Type u_1} {F : Type u_2} [DecidableEq F] [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.KT' 𝓒] :
HasAxiomT 𝓒
Equations
  • One or more equations did not get rendered due to their size.
instance LO.Modal.Entailment.KT'.instKT {S : Type u_1} {F : Type u_2} [DecidableEq F] [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.KT' 𝓒] :
Entailment.KT 𝓒
Equations
instance LO.Modal.Entailment.KT'.instKP {S : Type u_1} {F : Type u_2} [DecidableEq F] [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.KT' 𝓒] :
Entailment.KP 𝓒
Equations
instance LO.Modal.Entailment.KT'.instKD {S : Type u_1} {F : Type u_2} [DecidableEq F] [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.KT' 𝓒] :
Entailment.KD 𝓒
Equations
instance LO.Modal.Entailment.instET {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.KT 𝓒] :
Entailment.ET 𝓒
Equations
instance LO.Modal.Entailment.instKD {S : Type u_1} {F : Type u_2} [DecidableEq F] [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.KT 𝓒] :
Entailment.KD 𝓒
Equations
@[simp]
theorem LO.Modal.Entailment.reduce_box_in_CAnt! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [Entailment S F] {𝓒 : S} [Entailment.KT 𝓒] {i n : β„•} {Ο† : F} :
𝓒 ⊒ β–‘^[i + n]Ο† ➝ β–‘^[i]Ο†