instance
LO.Modal.Entailment.KT'.instHasAxiomT
{S : Type u_1}
{F : Type u_2}
[DecidableEq F]
[BasicModalLogicalConnective F]
[Entailment S F]
{π’ : S}
[Entailment.KT' π’]
:
HasAxiomT π’
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Modal.Entailment.KT'.instKT
{S : Type u_1}
{F : Type u_2}
[DecidableEq F]
[BasicModalLogicalConnective F]
[Entailment S F]
{π’ : S}
[Entailment.KT' π’]
:
Entailment.KT π’
Equations
- LO.Modal.Entailment.KT'.instKT = { toK := instβ.toK, toHasAxiomT := LO.Modal.Entailment.KT'.instHasAxiomT }
instance
LO.Modal.Entailment.KT'.instKP
{S : Type u_1}
{F : Type u_2}
[DecidableEq F]
[BasicModalLogicalConnective F]
[Entailment S F]
{π’ : S}
[Entailment.KT' π’]
:
Entailment.KP π’
Equations
- LO.Modal.Entailment.KT'.instKP = { toK := instβ.toK, toHasAxiomP := LO.Modal.Entailment.instHasAxiomP }
instance
LO.Modal.Entailment.KT'.instKD
{S : Type u_1}
{F : Type u_2}
[DecidableEq F]
[BasicModalLogicalConnective F]
[Entailment S F]
{π’ : S}
[Entailment.KT' π’]
:
Entailment.KD π’
Equations
- LO.Modal.Entailment.KT'.instKD = { toK := instβ.toK, toHasAxiomD := LO.Modal.Entailment.KP.instHasAxiomD }
instance
LO.Modal.Entailment.instET
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{π’ : S}
[Entailment.KT π’]
:
Entailment.ET π’
Equations
- LO.Modal.Entailment.instET = { toE := LO.Modal.Entailment.instE, toHasAxiomT := instβ.toHasAxiomT }
instance
LO.Modal.Entailment.instKD
{S : Type u_1}
{F : Type u_2}
[DecidableEq F]
[BasicModalLogicalConnective F]
[Entailment S F]
{π’ : S}
[Entailment.KT π’]
:
Entailment.KD π’
Equations
- LO.Modal.Entailment.instKD = { toK := instβ.toK, toHasAxiomD := LO.Modal.Entailment.ET.instHasAxiomD }
@[simp]
theorem
LO.Modal.Entailment.reduce_box_in_CAnt!
{S : Type u_1}
{F : Type u_2}
[BasicModalLogicalConnective F]
[Entailment S F]
{π’ : S}
[Entailment.KT π’]
{i n : β}
{Ο : F}
: