Documentation

Foundation.Modal.Formula.NNFormula

inductive LO.Modal.NNFormula (α : Type u) :
Instances For
    def LO.Modal.instDecidableEqNNFormula.decEq {α✝ : Type u_1} [DecidableEq α✝] (x✝ x✝¹ : NNFormula α✝) :
    Decidable (x✝ = x✝¹)
    Equations
    Instances For
      def LO.Modal.NNFormula.imp {α : Type u} (φ ψ : NNFormula α) :
      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        theorem LO.Modal.NNFormula.or_eq {α : Type u} {φ ψ : NNFormula α} :
        φ.or ψ = φ ψ
        theorem LO.Modal.NNFormula.and_eq {α : Type u} {φ ψ : NNFormula α} :
        φ.and ψ = φ ψ
        theorem LO.Modal.NNFormula.imp_eq {α : Type u} {φ ψ : NNFormula α} :
        φ.imp ψ = φ ψ
        theorem LO.Modal.NNFormula.box_eq {α : Type u} {φ : NNFormula α} :
        φ.box = φ
        theorem LO.Modal.NNFormula.dia_eq {α : Type u} {φ : NNFormula α} :
        φ.dia = φ
        @[simp]
        theorem LO.Modal.NNFormula.imp_eq' {α : Type u} {φ ψ : NNFormula α} :
        φ ψ = φ ψ
        @[simp]
        theorem LO.Modal.NNFormula.iff_eq {α : Type u} {φ ψ : NNFormula α} :
        φ ψ = (φ ψ) (ψ φ)
        @[simp]
        theorem LO.Modal.NNFormula.and_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.or_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.imp_inj {α : Type u} (φ₁ ψ₁ φ₂ ψ₂ : Formula α) :
        φ₁ φ₂ = ψ₁ ψ₂ φ₁ = ψ₁ φ₂ = ψ₂
        @[simp]
        theorem LO.Modal.NNFormula.neg_inj {α : Type u} (φ ψ : Formula α) :
        φ = ψ φ = ψ
        theorem LO.Modal.NNFormula.neg_eq {α : Type u} {φ : NNFormula α} :
        φ.neg = φ
        @[simp]
        theorem LO.Modal.NNFormula.neg_atom {α : Type u} (a : α) :
        @[simp]
        theorem LO.Modal.NNFormula.neg_natom {α : Type u} (a : α) :
        theorem LO.Modal.NNFormula.negneg {α : Type u} {φ : NNFormula α} :
        φ = φ
        @[simp]
        def LO.Modal.NNFormula.cases' {α : Type u} {C : NNFormula αSort v} (hAtom : (a : α) → C (atom a)) (hNatom : (a : α) → C (natom a)) (hFalsum : C ) (hVerum : C ) (hOr : (φ ψ : NNFormula α) → C (φ ψ)) (hAnd : (φ ψ : NNFormula α) → C (φ ψ)) (hBox : (φ : NNFormula α) → C (φ)) (hDia : (φ : NNFormula α) → C (φ)) (φ : NNFormula α) :
        C φ
        Equations
        Instances For
          def LO.Modal.NNFormula.rec' {α : Type u} {C : NNFormula αSort v} (hAtom : (a : α) → C (atom a)) (hNatom : (a : α) → C (natom a)) (hFalsum : C ) (hVerum : C ) (hOr : (φ ψ : NNFormula α) → C φC ψC (φ ψ)) (hAnd : (φ ψ : NNFormula α) → C φC ψC (φ ψ)) (hBox : (φ : NNFormula α) → C φC (φ)) (hDia : (φ : NNFormula α) → C φC (φ)) (φ : NNFormula α) :
          C φ
          Equations
          Instances For
            @[irreducible]
            Equations
            Instances For
              Equations
              Instances For
                theorem LO.Modal.NNFormula.exists_isPrebox {α : Type u} {φ : NNFormula α} ( : φ.isPrebox) :
                ∃ (ψ : NNFormula α), φ = ψ
                Equations
                Instances For
                  theorem LO.Modal.NNFormula.exists_isPredia {α : Type u} {φ : NNFormula α} ( : φ.isPredia) :
                  ∃ (ψ : NNFormula α), φ = ψ
                  @[reducible, inline]
                  Equations
                  Instances For
                    Equations
                    Instances For
                      @[simp]
                      Equations
                      Instances For
                        @[simp]