def
LO.Modal.Neighborhood.filterEquiv
(M : Model)
(T : FormulaSet ℕ)
[T.IsSubformulaClosed]
(x y : M.World)
:
Equations
- LO.Modal.Neighborhood.filterEquiv M T x y = ∀ φ ∈ T, x ⊧ φ ↔ y ⊧ φ
Instances For
theorem
LO.Modal.Neighborhood.filterEquiv.equivalence
(M : Model)
(T : FormulaSet ℕ)
[T.IsSubformulaClosed]
:
Equivalence (filterEquiv M T)
Equations
- LO.Modal.Neighborhood.FilterEqvSetoid M T = { r := LO.Modal.Neighborhood.filterEquiv M T, iseqv := ⋯ }
Instances For
@[reducible, inline]
abbrev
LO.Modal.Neighborhood.FilterEqvQuotient
(M : Model)
(T : FormulaSet ℕ)
[T.IsSubformulaClosed]
:
Equations
Instances For
theorem
LO.Modal.Neighborhood.FilterEqvQuotient.finite
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
(T_finite : Set.Finite T)
:
Finite (FilterEqvQuotient M T)
instance
LO.Modal.Neighborhood.FilterEqvQuotient.instNonempty
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
:
Nonempty (FilterEqvQuotient M T)
def
LO.Modal.Neighborhood.toFilterEquivSet
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
(X : Set M.World)
:
Set (FilterEqvQuotient M T)
Equations
- LO.Modal.Neighborhood.toFilterEquivSet X = {x : LO.Modal.Neighborhood.FilterEqvQuotient M T | ∃ x_1 ∈ X, ⟦x_1⟧ = x}
Instances For
theorem
LO.Modal.Neighborhood.toFilterEquivSet.mem_of_mem
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{X : Set M.World}
{x : M.World}
(hx : x ∈ X)
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.iff_mem_truthset
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{x : M.World}
{φ : Formula ℕ}
(hφ : φ ∈ T)
:
@[simp]
theorem
LO.Modal.Neighborhood.toFilterEquivSet.empty
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.union
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{X Y : Set M.World}
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.of_inter
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{X Y : Set M.World}
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.compl_truthset
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ : Formula ℕ}
(hφ : φ ∈ T)
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.subset_original_truthset_of_subset
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ ψ : Formula ℕ}
(hψ : ψ ∈ T)
(h : toFilterEquivSet (M.truthset φ) ⊆ toFilterEquivSet (M.truthset ψ))
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.eq_original_truthset_of_eq
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ ψ : Formula ℕ}
(hφ : φ ∈ T)
(hψ : ψ ∈ T)
(h : toFilterEquivSet (M.truthset φ) = toFilterEquivSet (M.truthset ψ))
:
@[simp]
theorem
LO.Modal.Neighborhood.toFilterEquivSet.eq_univ
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
:
@[simp]
theorem
LO.Modal.Neighborhood.toFilterEquivSet.contains_unit
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.ContainsUnit]
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.trans_truthset
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ : Formula ℕ}
[M.IsTransitive]
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.refl_truthset
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ : Formula ℕ}
[M.IsReflexive]
:
theorem
LO.Modal.Neighborhood.toFilterEquivSet.mono'_truthset
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ ψ : Formula ℕ}
[M.IsMonotonic]
(hψ : ψ ∈ T)
(h : toFilterEquivSet (M.truthset φ) ⊆ toFilterEquivSet (M.truthset ψ))
:
- B : Set (FilterEqvQuotient M T) → Set (FilterEqvQuotient M T)
- V : ℕ → Set (FilterEqvQuotient M T)
Instances For
def
LO.Modal.Neighborhood.Filtration.toModel
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
(Fi : Filtration M T)
:
Equations
- Fi.toModel = { toFrame := LO.Modal.Neighborhood.Frame.mk_ℬ (LO.Modal.Neighborhood.FilterEqvQuotient M T) Fi.B, Val := Fi.V }
Instances For
@[simp]
theorem
LO.Modal.Neighborhood.Filtration.toModel_def
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{Fi : Filtration M T}
{X : Set Fi.toModel.World}
:
theorem
LO.Modal.Neighborhood.Filtration.filtration
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
(Fi : Filtration M T)
(φ : Formula ℕ)
(hφ : φ ∈ T)
:
theorem
LO.Modal.Neighborhood.Filtration.filtration_satisfies
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
(Fi : Filtration M T)
(φ : Formula ℕ)
(hφ : φ ∈ T)
{x : M.World}
:
theorem
LO.Modal.Neighborhood.Filtration.truthlemma
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
(Fi : Filtration M T)
{φ ψ : Formula ℕ}
(hφ : φ ∈ T)
(hψ : ψ ∈ T)
:
theorem
LO.Modal.Neighborhood.Filtration.iff_mem_toModel_box_mem_B
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{Y : Set (FilterEqvQuotient M T)}
{W : Quot ⇑(FilterEqvSetoid M T)}
{Fi : Filtration M T}
:
theorem
LO.Modal.Neighborhood.Filtration.box_in_out
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ : Formula ℕ}
{Fi : Filtration M T}
(hφ : □φ ∈ T)
:
theorem
LO.Modal.Neighborhood.Filtration.mem_box_in_out
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ : Formula ℕ}
{Fi : Filtration M T}
{X : FilterEqvQuotient M T}
(hψ : □φ ∈ T)
:
theorem
LO.Modal.Neighborhood.Filtration.transitive_lemma
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{φ ψ : Formula ℕ}
(hφ : φ ∈ T)
(hψ : □ψ ∈ T)
(Fi : Filtration M T)
(h : toFilterEquivSet (M.truthset φ) = Fi.B (toFilterEquivSet (M.truthset ψ)))
:
def
LO.Modal.Neighborhood.minimalFiltration
(M : Model)
(T : FormulaSet ℕ)
[T.IsSubformulaClosed]
:
Filtration M T
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Modal.Neighborhood.minimalFiltration.iff_mem_B
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{X : Set (FilterEqvQuotient M T)}
{W : FilterEqvQuotient M T}
:
def
LO.Modal.Neighborhood.transitiveFiltration
(M : Model)
[M.IsTransitive]
(T : FormulaSet ℕ)
[T.IsSubformulaClosed]
:
Filtration M T
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Modal.Neighborhood.transitiveFiltration.iff_mem_B
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsTransitive]
{X : Set (FilterEqvQuotient M T)}
{W : FilterEqvQuotient M T}
:
instance
LO.Modal.Neighborhood.transitiveFiltration.isTransitive
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsTransitive]
:
instance
LO.Modal.Neighborhood.transitiveFiltration.isReflexive
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsTransitive]
[M.IsReflexive]
:
instance
LO.Modal.Neighborhood.transitiveFiltration.containsUnit
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsTransitive]
[M.ContainsUnit]
(hT : □⊤ ∈ T)
:
def
LO.Modal.Neighborhood.supplementedTransitiveFiltration
(M : Model)
[M.IsMonotonic]
[M.IsTransitive]
(T : FormulaSet ℕ)
[T.IsSubformulaClosed]
:
Filtration M T
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.Modal.Neighborhood.supplementedTransitiveFiltration.isMonotonic
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsMonotonic]
[M.IsTransitive]
:
instance
LO.Modal.Neighborhood.supplementedTransitiveFiltration.isTransitive
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsMonotonic]
[M.IsTransitive]
:
instance
LO.Modal.Neighborhood.supplementedTransitiveFiltration.isReflexive
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsMonotonic]
[M.IsTransitive]
[M.IsReflexive]
:
instance
LO.Modal.Neighborhood.supplementedTransitiveFiltration.containsUnit
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
[M.IsMonotonic]
[M.IsTransitive]
[M.ContainsUnit]
(hT : □⊤ ∈ T)
:
def
LO.Modal.Neighborhood.quasiFilteringTransitiveFiltration
(M : Model)
[M.IsMonotonic]
[M.IsTransitive]
[M.IsRegular]
(T : FormulaSet ℕ)
[T.IsSubformulaClosed]
(hT : Set.Finite T)
:
Filtration M T
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.Modal.Neighborhood.quasiFilteringTransitiveFiltration.isRegular
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{T_finite : Set.Finite T}
[M.IsMonotonic]
[M.IsTransitive]
[M.IsRegular]
:
(quasiFilteringTransitiveFiltration M T T_finite).toModel.IsRegular
instance
LO.Modal.Neighborhood.quasiFilteringTransitiveFiltration.isMonotonic
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{T_finite : Set.Finite T}
[M.IsMonotonic]
[M.IsTransitive]
[M.IsRegular]
:
(quasiFilteringTransitiveFiltration M T T_finite).toModel.IsMonotonic
instance
LO.Modal.Neighborhood.quasiFilteringTransitiveFiltration.isTransitive
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{T_finite : Set.Finite T}
[M.IsMonotonic]
[M.IsTransitive]
[M.IsRegular]
:
(quasiFilteringTransitiveFiltration M T T_finite).toModel.IsTransitive
instance
LO.Modal.Neighborhood.quasiFilteringTransitiveFiltration.containsUnit
{M : Model}
{T : FormulaSet ℕ}
[T.IsSubformulaClosed]
{T_finite : Set.Finite T}
[M.IsMonotonic]
[M.IsTransitive]
[M.IsRegular]
[M.ContainsUnit]
(hT : □⊤ ∈ T)
:
(quasiFilteringTransitiveFiltration M T T_finite).toModel.ContainsUnit