Documentation
Foundation
.
Modal
.
Neighborhood
.
Logic
.
EMT4
Search
return to top
source
Imports
Init
Foundation.Modal.Neighborhood.Logic.E4
Foundation.Modal.Neighborhood.Logic.EMT
Imported by
LO
.
Modal
.
Neighborhood
.
Frame
.
IsEMT4
LO
.
Modal
.
Neighborhood
.
FrameClass
.
EMT4
LO
.
Modal
.
Neighborhood
.
Frame
.
IsFiniteEMT4
LO
.
Modal
.
Neighborhood
.
FrameClass
.
finite_EMT4
LO
.
Modal
.
EMT4
.
Neighborhood
.
sound
LO
.
Modal
.
EMT4
.
consistent
LO
.
Modal
.
EMT4
.
Neighborhood
.
complete
LO
.
Modal
.
EMT4
.
Neighborhood
.
finite_complete
source
class
LO
.
Modal
.
Neighborhood
.
Frame
.
IsEMT4
(
F
:
Frame
)
extends
F
.
IsMonotonic
,
F
.
IsReflexive
,
F
.
IsTransitive
:
Prop
mono
(
X
Y
:
Set
F
.
World
)
:
F
.
box
(
X
∩
Y
)
⊆
F
.
box
X
∩
F
.
box
Y
refl
(
X
:
Set
F
.
World
)
:
F
.
box
X
⊆
X
trans
(
X
:
Set
F
.
World
)
:
F
.
box
X
⊆
F
.
box
^[
2
]
X
Instances
source
@[reducible, inline]
abbrev
LO
.
Modal
.
Neighborhood
.
FrameClass
.
EMT4
:
FrameClass
Equations
LO.Modal.Neighborhood.FrameClass.EMT4
=
{
F
:
LO.Modal.Neighborhood.Frame
|
F
.
IsEMT4
}
Instances For
source
class
LO
.
Modal
.
Neighborhood
.
Frame
.
IsFiniteEMT4
(
F
:
Frame
)
extends
F
.
IsEMT4
,
F
.
IsFinite
:
Prop
mono
(
X
Y
:
Set
F
.
World
)
:
F
.
box
(
X
∩
Y
)
⊆
F
.
box
X
∩
F
.
box
Y
refl
(
X
:
Set
F
.
World
)
:
F
.
box
X
⊆
X
trans
(
X
:
Set
F
.
World
)
:
F
.
box
X
⊆
F
.
box
^[
2
]
X
world_finite
:
Finite
F
.
World
Instances
source
@[reducible, inline]
abbrev
LO
.
Modal
.
Neighborhood
.
FrameClass
.
finite_EMT4
:
FrameClass
Equations
LO.Modal.Neighborhood.FrameClass.finite_EMT4
=
{
F
:
LO.Modal.Neighborhood.Frame
|
F
.
IsFiniteEMT4
}
Instances For
source
instance
LO
.
Modal
.
EMT4
.
Neighborhood
.
sound
:
Sound
Modal.EMT4
Neighborhood.FrameClass.EMT4
source
instance
LO
.
Modal
.
EMT4
.
consistent
:
Entailment.Consistent
Modal.EMT4
source
instance
LO
.
Modal
.
EMT4
.
Neighborhood
.
complete
:
Complete
Modal.EMT4
Neighborhood.FrameClass.EMT4
source
instance
LO
.
Modal
.
EMT4
.
Neighborhood
.
finite_complete
:
Complete
Modal.EMT4
Neighborhood.FrameClass.finite_EMT4
FFP of
Modal.
EMT4