Equations
- LO.Modal.Tableau α = (Set (LO.Modal.Formula α) × Set (LO.Modal.Formula α))
Instances For
def
LO.Modal.Tableau.Consistent
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
(𝓢 : S)
(t : Tableau α)
:
Equations
- LO.Modal.Tableau.Consistent 𝓢 t = ∀ {Γ Δ : Finset (LO.Modal.Formula α)}, ↑Γ ⊆ t.1 → ↑Δ ⊆ t.2 → 𝓢 ⊬ Γ.conj ➝ Δ.disj
Instances For
@[reducible, inline]
abbrev
LO.Modal.Tableau.Inconsistent
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
(𝓢 : S)
(t : Tableau α)
:
Equations
Instances For
Equations
- LO.Modal.Tableau.instHasSubset = { Subset := fun (t₁ t₂ : LO.Modal.Tableau α) => t₁.1 ⊆ t₂.1 ∧ t₁.2 ⊆ t₂.2 }
theorem
LO.Modal.Tableau.disjoint_of_consistent
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : Tableau α}
[Entailment.Cl 𝓢]
(hCon : Tableau.Consistent 𝓢 t)
:
t.Disjoint
theorem
LO.Modal.Tableau.iff_not_mem₁_mem₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : Tableau α}
{φ : Formula α}
[Entailment.Cl 𝓢]
(hCon : Tableau.Consistent 𝓢 t)
(hMax : t.Maximal)
:
theorem
LO.Modal.Tableau.iff_not_mem₂_mem₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : Tableau α}
{φ : Formula α}
[Entailment.Cl 𝓢]
(hCon : Tableau.Consistent 𝓢 t)
(hMax : t.Maximal)
:
theorem
LO.Modal.Tableau.maximal_duality
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
[Entailment.Cl 𝓢]
{t₁ t₂ : Tableau α}
(hCon₁ : Tableau.Consistent 𝓢 t₁)
(hCon₂ : Tableau.Consistent 𝓢 t₂)
(hMax₁ : t₁.Maximal)
(hMax₂ : t₂.Maximal)
:
theorem
LO.Modal.Tableau.iff_consistent_insert₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
{T U : Set (Formula α)}
:
theorem
LO.Modal.Tableau.iff_inconsistent_insert₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
{T U : Set (Formula α)}
:
theorem
LO.Modal.Tableau.iff_consistent_insert₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
{T U : Set (Formula α)}
:
theorem
LO.Modal.Tableau.iff_not_consistent_insert₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
{T U : Set (Formula α)}
:
theorem
LO.Modal.Tableau.iff_consistent_empty_singleton₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
:
theorem
LO.Modal.Tableau.iff_inconsistent_singleton₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
:
theorem
LO.Modal.Tableau.either_expand_consistent_of_consistent
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : Tableau α}
[Entailment.Cl 𝓢]
[DecidableEq α]
(hCon : Tableau.Consistent 𝓢 t)
(φ : Formula α)
:
theorem
LO.Modal.Tableau.consistent_empty
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
[Entailment.Cl 𝓢]
[DecidableEq α]
[H_consis : Entailment.Consistent 𝓢]
:
noncomputable def
LO.Modal.Tableau.lindenbaum_next
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
(𝓢 : S)
(φ : Formula α)
(t : Tableau α)
:
Tableau α
Equations
Instances For
noncomputable def
LO.Modal.Tableau.lindenbaum_indexed
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
(𝓢 : S)
[Encodable α]
(t : Tableau α)
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Modal.Tableau.lindenbaum_indexed 𝓢 t 0 = t
Instances For
def
LO.Modal.Tableau.lindenbaum_max
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
(𝓢 : S)
[Encodable α]
(t : Tableau α)
:
Tableau α
Equations
- LO.Modal.Tableau.lindenbaum_max 𝓢 t = (⋃ (i : ℕ), (LO.Modal.Tableau.lindenbaum_indexed 𝓢 t i).1, ⋃ (i : ℕ), (LO.Modal.Tableau.lindenbaum_indexed 𝓢 t i).2)
Instances For
@[simp]
theorem
LO.Modal.Tableau.eq_lindenbaum_indexed_zero
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
[Encodable α]
{t : Tableau α}
:
theorem
LO.Modal.Tableau.consistent_lindenbaum_next
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Entailment.Cl 𝓢]
(consistent : Tableau.Consistent 𝓢 t)
(φ : Formula α)
:
Tableau.Consistent 𝓢 (lindenbaum_next 𝓢 φ t)
theorem
LO.Modal.Tableau.consistent_lindenbaum_indexed_succ
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
[Entailment.Cl 𝓢]
{i : ℕ}
:
Tableau.Consistent 𝓢 (lindenbaum_indexed 𝓢 t i) → Tableau.Consistent 𝓢 (lindenbaum_indexed 𝓢 t (i + 1))
theorem
LO.Modal.Tableau.either_mem_lindenbaum_indexed
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
[Encodable α]
(t : Tableau α)
(φ : Formula α)
:
φ ∈ (lindenbaum_indexed 𝓢 t (Encodable.encode φ + 1)).1 ∨ φ ∈ (lindenbaum_indexed 𝓢 t (Encodable.encode φ + 1)).2
theorem
LO.Modal.Tableau.consistent_lindenbaum_indexed
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
[Entailment.Cl 𝓢]
(consistent : Tableau.Consistent 𝓢 t)
(i : ℕ)
:
Tableau.Consistent 𝓢 (lindenbaum_indexed 𝓢 t i)
theorem
LO.Modal.Tableau.subset₁_lindenbaum_indexed_of_lt
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
{m n : ℕ}
(h : m ≤ n)
:
theorem
LO.Modal.Tableau.subset₂_lindenbaum_indexed_of_lt
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
{m n : ℕ}
(h : m ≤ n)
:
theorem
LO.Modal.Tableau.exists_list_lindenbaum_index₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
{Γ : List (Formula α)}
(hΓ : ↑Γ.toFinset ⊆ ⋃ (i : ℕ), (lindenbaum_indexed 𝓢 t i).1)
:
∃ (m : ℕ), ∀ φ ∈ Γ, φ ∈ (lindenbaum_indexed 𝓢 t m).1
theorem
LO.Modal.Tableau.exists_finset_lindenbaum_index₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
{Γ : Finset (Formula α)}
(hΓ : ↑Γ ⊆ ⋃ (i : ℕ), (lindenbaum_indexed 𝓢 t i).1)
:
∃ (m : ℕ), ∀ φ ∈ Γ, φ ∈ (lindenbaum_indexed 𝓢 t m).1
theorem
LO.Modal.Tableau.exists_list_lindenbaum_index₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
{Δ : List (Formula α)}
(hΔ : ↑Δ.toFinset ⊆ ⋃ (i : ℕ), (lindenbaum_indexed 𝓢 t i).2)
:
∃ (n : ℕ), ∀ φ ∈ Δ, φ ∈ (lindenbaum_indexed 𝓢 t n).2
theorem
LO.Modal.Tableau.exists_finset_lindenbaum_index₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
{Δ : Finset (Formula α)}
(hΓ : ↑Δ ⊆ ⋃ (i : ℕ), (lindenbaum_indexed 𝓢 t i).2)
:
∃ (n : ℕ), ∀ φ ∈ Δ, φ ∈ (lindenbaum_indexed 𝓢 t n).2
theorem
LO.Modal.Tableau.exists_consistent_saturated_tableau
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
[Entailment.Cl 𝓢]
(hCon : Tableau.Consistent 𝓢 t)
:
theorem
LO.Modal.Tableau.lindenbaum
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{t : Tableau α}
{𝓢 : S}
[Encodable α]
[Entailment.Cl 𝓢]
(hCon : Tableau.Consistent 𝓢 t)
:
Alias of LO.Modal.Tableau.exists_consistent_saturated_tableau.
def
LO.Modal.MaximalConsistentTableau
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
(𝓢 : S)
:
Type u_1
Equations
Instances For
@[simp]
theorem
LO.Modal.MaximalConsistentTableau.maximal
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
(t : MaximalConsistentTableau 𝓢)
:
(↑t).Maximal
@[simp]
theorem
LO.Modal.MaximalConsistentTableau.consistent
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
(t : MaximalConsistentTableau 𝓢)
:
Tableau.Consistent 𝓢 ↑t
theorem
LO.Modal.MaximalConsistentTableau.lindenbaum
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t₀ : Tableau α}
[Entailment.Cl 𝓢]
[Encodable α]
(hCon : Tableau.Consistent 𝓢 t₀)
:
∃ (t : MaximalConsistentTableau 𝓢), t₀ ⊆ ↑t
instance
LO.Modal.MaximalConsistentTableau.instNonemptyOfConsistentOfClFormulaOfDecidableEqOfEncodable
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
[Entailment.Consistent 𝓢]
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.disjoint
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
(↑t).Disjoint
theorem
LO.Modal.MaximalConsistentTableau.iff_not_mem₁_mem₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_not_mem₂_mem₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.neither
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.maximal_duality
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t₁ t₂ : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.equality_of₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t₁ t₂ : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
(e₁ : (↑t₁).1 = (↑t₂).1)
:
theorem
LO.Modal.MaximalConsistentTableau.equality_of₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t₁ t₂ : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
(e₂ : (↑t₁).2 = (↑t₂).2)
:
theorem
LO.Modal.MaximalConsistentTableau.ne₁_of_ne
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t₁ t₂ : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.ne₂_of_ne
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t₁ t₂ : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.intro_equality
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t₁ t₂ : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
(h₁ : ∀ {φ : Formula α}, φ ∈ (↑t₁).1 → φ ∈ (↑t₂).1)
(h₂ : ∀ {φ : Formula α}, φ ∈ (↑t₁).2 → φ ∈ (↑t₂).2)
:
theorem
LO.Modal.MaximalConsistentTableau.iff_provable_include₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{T : Set (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_provable_mem₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.mdp_mem₁
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
(hφψ : φ ➝ ψ ∈ (↑t).1)
(hφ : φ ∈ (↑t).1)
:
theorem
LO.Modal.MaximalConsistentTableau.mdp_mem₁_provable
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
(hφψ : 𝓢 ⊢ φ ➝ ψ)
(hφ : φ ∈ (↑t).1)
:
theorem
LO.Modal.MaximalConsistentTableau.mdp_mem₂_provable
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
(hφψ : 𝓢 ⊢ φ ➝ ψ)
:
@[simp]
theorem
LO.Modal.MaximalConsistentTableau.mem₁_verum
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
@[simp]
theorem
LO.Modal.MaximalConsistentTableau.not_mem₂_verum
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
⊤ ∉ (↑t).2
@[simp]
theorem
LO.Modal.MaximalConsistentTableau.not_mem₁_falsum
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
⊥ ∉ (↑t).1
@[simp]
theorem
LO.Modal.MaximalConsistentTableau.mem₂_falsum
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_and
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_and
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_conj₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{Γ : List (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_fconj
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{Γ : Finset (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_conj₂
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{Γ : List (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_fconj
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{Γ : Finset (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_or
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_or
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_disj
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{Γ : List (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_disj
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{Γ : List (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_fdisj
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{Γ : Finset (Formula α)}
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_imp
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_imp'
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_imp
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ ψ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_neg
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_neg'
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_neg
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_neg'
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_boxItr
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{n : ℕ}
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_box
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_boxItr
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{n : ℕ}
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_box
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_diaItr
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{n : ℕ}
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₁_dia
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_diaItr
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{n : ℕ}
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.iff_mem₂_dia
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
{φ : Formula α}
{t : MaximalConsistentTableau 𝓢}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
[Entailment.K 𝓢]
:
theorem
LO.Modal.MaximalConsistentTableau.exists₁₂_of_ne
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{y z : MaximalConsistentTableau 𝓢}
(eyz : y ≠ z)
:
∃ φ₂ ∈ (↑y).1, φ₂ ∈ (↑z).2
theorem
LO.Modal.MaximalConsistentTableau.exists₂₁_of_ne
{α : Type u_1}
{S : Type u_2}
[Entailment S (Formula α)]
{𝓢 : S}
[Entailment.Cl 𝓢]
[DecidableEq α]
[Encodable α]
{y z : MaximalConsistentTableau 𝓢}
(eyz : y ≠ z)
:
∃ φ₁ ∈ (↑y).2, φ₁ ∈ (↑z).1