Documentation

Foundation.Modal.Tableau

def LO.Modal.Tableau (α : Type u) :
Equations
Instances For
    def LO.Modal.Tableau.Consistent {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] (𝓢 : S) (t : Tableau α) :
    Equations
    Instances For
      @[reducible, inline]
      abbrev LO.Modal.Tableau.Inconsistent {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] (𝓢 : S) (t : Tableau α) :
      Equations
      Instances For
        structure LO.Modal.Tableau.Saturated {α : Type u_1} (t : Tableau α) :
        Instances For
          structure LO.Modal.Tableau.Disjoint {α : Type u_1} (t : Tableau α) :
          Instances For
            def LO.Modal.Tableau.Maximal {α : Type u_1} (t : Tableau α) :
            Equations
            Instances For
              Equations
              @[simp]
              theorem LO.Modal.Tableau.subset_def {α : Type u_1} {t₁ t₂ : Tableau α} :
              t₁ t₂ t₁.1 t₂.1 t₁.2 t₂.2
              theorem LO.Modal.Tableau.equality_def {α : Type u_1} {t₁ t₂ : Tableau α} :
              t₁ = t₂ t₁.1 = t₂.1 t₁.2 = t₂.2
              theorem LO.Modal.Tableau.disjoint_of_consistent {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : Tableau α} [Entailment.Cl 𝓢] (hCon : Tableau.Consistent 𝓢 t) :
              theorem LO.Modal.Tableau.mem₂_of_not_mem₁ {α : Type u_1} {t : Tableau α} {φ : Formula α} (hMax : t.Maximal) :
              φt.1φ t.2
              theorem LO.Modal.Tableau.mem₁_of_not_mem₂ {α : Type u_1} {t : Tableau α} {φ : Formula α} (hMax : t.Maximal) :
              φt.2φ t.1
              theorem LO.Modal.Tableau.iff_not_mem₁_mem₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : Tableau α} {φ : Formula α} [Entailment.Cl 𝓢] (hCon : Tableau.Consistent 𝓢 t) (hMax : t.Maximal) :
              φt.1 φ t.2
              theorem LO.Modal.Tableau.iff_not_mem₂_mem₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : Tableau α} {φ : Formula α} [Entailment.Cl 𝓢] (hCon : Tableau.Consistent 𝓢 t) (hMax : t.Maximal) :
              φt.2 φ t.1
              theorem LO.Modal.Tableau.maximal_duality {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} [Entailment.Cl 𝓢] {t₁ t₂ : Tableau α} (hCon₁ : Tableau.Consistent 𝓢 t₁) (hCon₂ : Tableau.Consistent 𝓢 t₂) (hMax₁ : t₁.Maximal) (hMax₂ : t₂.Maximal) :
              t₁.1 = t₂.1 t₁.2 = t₂.2
              theorem LO.Modal.Tableau.iff_consistent_insert₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] {T U : Set (Formula α)} :
              Tableau.Consistent 𝓢 (insert φ T, U) ∀ {Γ Δ : Finset (Formula α)}, Γ TΔ U𝓢 φ Γ.conj Δ.disj
              theorem LO.Modal.Tableau.iff_inconsistent_insert₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] {T U : Set (Formula α)} :
              Tableau.Inconsistent 𝓢 (insert φ T, U) ∃ (Γ : Finset (Formula α)) (Δ : Finset (Formula α)), Γ T Δ U 𝓢 φ Γ.conj Δ.disj
              theorem LO.Modal.Tableau.iff_consistent_insert₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] {T U : Set (Formula α)} :
              Tableau.Consistent 𝓢 (T, insert φ U) ∀ {Γ Δ : Finset (Formula α)}, Γ TΔ U𝓢 Γ.conj φ Δ.disj
              theorem LO.Modal.Tableau.iff_not_consistent_insert₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] {T U : Set (Formula α)} :
              Tableau.Inconsistent 𝓢 (T, insert φ U) ∃ (Γ : Finset (Formula α)) (Δ : Finset (Formula α)), Γ T Δ U 𝓢 Γ.conj φ Δ.disj
              theorem LO.Modal.Tableau.iff_consistent_empty_singleton₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] :
              theorem LO.Modal.Tableau.iff_inconsistent_singleton₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] :
              theorem LO.Modal.Tableau.either_expand_consistent_of_consistent {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : Tableau α} [Entailment.Cl 𝓢] [DecidableEq α] (hCon : Tableau.Consistent 𝓢 t) (φ : Formula α) :
              theorem LO.Modal.Tableau.consistent_empty {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} [Entailment.Cl 𝓢] [DecidableEq α] [H_consis : Entailment.Consistent 𝓢] :
              noncomputable def LO.Modal.Tableau.lindenbaum_next {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] (𝓢 : S) (φ : Formula α) (t : Tableau α) :
              Equations
              Instances For
                noncomputable def LO.Modal.Tableau.lindenbaum_indexed {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] (𝓢 : S) [Encodable α] (t : Tableau α) :
                Tableau α
                Equations
                Instances For
                  def LO.Modal.Tableau.lindenbaum_max {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] (𝓢 : S) [Encodable α] (t : Tableau α) :
                  Equations
                  Instances For
                    @[simp]
                    theorem LO.Modal.Tableau.eq_lindenbaum_indexed_zero {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} [Encodable α] {t : Tableau α} :
                    theorem LO.Modal.Tableau.consistent_lindenbaum_next {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Entailment.Cl 𝓢] (consistent : Tableau.Consistent 𝓢 t) (φ : Formula α) :
                    theorem LO.Modal.Tableau.consistent_lindenbaum_indexed_succ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] [Entailment.Cl 𝓢] {i : } :
                    theorem LO.Modal.Tableau.either_mem_lindenbaum_indexed {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} [Encodable α] (t : Tableau α) (φ : Formula α) :
                    theorem LO.Modal.Tableau.consistent_lindenbaum_indexed {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] [Entailment.Cl 𝓢] (consistent : Tableau.Consistent 𝓢 t) (i : ) :
                    theorem LO.Modal.Tableau.subset₁_lindenbaum_indexed_of_lt {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] {m n : } (h : m n) :
                    (lindenbaum_indexed 𝓢 t m).1 (lindenbaum_indexed 𝓢 t n).1
                    theorem LO.Modal.Tableau.subset₂_lindenbaum_indexed_of_lt {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] {m n : } (h : m n) :
                    (lindenbaum_indexed 𝓢 t m).2 (lindenbaum_indexed 𝓢 t n).2
                    theorem LO.Modal.Tableau.exists_list_lindenbaum_index₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] {Γ : List (Formula α)} ( : Γ.toFinset ⋃ (i : ), (lindenbaum_indexed 𝓢 t i).1) :
                    ∃ (m : ), φΓ, φ (lindenbaum_indexed 𝓢 t m).1
                    theorem LO.Modal.Tableau.exists_finset_lindenbaum_index₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] {Γ : Finset (Formula α)} ( : Γ ⋃ (i : ), (lindenbaum_indexed 𝓢 t i).1) :
                    ∃ (m : ), φΓ, φ (lindenbaum_indexed 𝓢 t m).1
                    theorem LO.Modal.Tableau.exists_list_lindenbaum_index₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] {Δ : List (Formula α)} ( : Δ.toFinset ⋃ (i : ), (lindenbaum_indexed 𝓢 t i).2) :
                    ∃ (n : ), φΔ, φ (lindenbaum_indexed 𝓢 t n).2
                    theorem LO.Modal.Tableau.exists_finset_lindenbaum_index₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] {Δ : Finset (Formula α)} ( : Δ ⋃ (i : ), (lindenbaum_indexed 𝓢 t i).2) :
                    ∃ (n : ), φΔ, φ (lindenbaum_indexed 𝓢 t n).2
                    theorem LO.Modal.Tableau.exists_consistent_saturated_tableau {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] [Entailment.Cl 𝓢] (hCon : Tableau.Consistent 𝓢 t) :
                    ∃ (u : Tableau α), t u Tableau.Consistent 𝓢 u u.Maximal
                    theorem LO.Modal.Tableau.lindenbaum {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {t : Tableau α} {𝓢 : S} [Encodable α] [Entailment.Cl 𝓢] (hCon : Tableau.Consistent 𝓢 t) :
                    ∃ (u : Tableau α), t u Tableau.Consistent 𝓢 u u.Maximal

                    Alias of LO.Modal.Tableau.exists_consistent_saturated_tableau.

                    @[simp]
                    theorem LO.Modal.MaximalConsistentTableau.maximal {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} (t : MaximalConsistentTableau 𝓢) :
                    (↑t).Maximal
                    @[simp]
                    theorem LO.Modal.MaximalConsistentTableau.consistent {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} (t : MaximalConsistentTableau 𝓢) :
                    theorem LO.Modal.MaximalConsistentTableau.lindenbaum {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t₀ : Tableau α} [Entailment.Cl 𝓢] [Encodable α] (hCon : Tableau.Consistent 𝓢 t₀) :
                    ∃ (t : MaximalConsistentTableau 𝓢), t₀ t
                    theorem LO.Modal.MaximalConsistentTableau.disjoint {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    (↑t).Disjoint
                    theorem LO.Modal.MaximalConsistentTableau.iff_not_mem₁_mem₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    φ(↑t).1 φ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_not_mem₂_mem₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    φ(↑t).2 φ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.neither {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    ¬(φ (↑t).1 φ (↑t).2)
                    theorem LO.Modal.MaximalConsistentTableau.maximal_duality {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t₁ t₂ : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    (↑t₁).1 = (↑t₂).1 (↑t₁).2 = (↑t₂).2
                    theorem LO.Modal.MaximalConsistentTableau.equality_of₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t₁ t₂ : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] (e₁ : (↑t₁).1 = (↑t₂).1) :
                    t₁ = t₂
                    theorem LO.Modal.MaximalConsistentTableau.equality_of₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t₁ t₂ : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] (e₂ : (↑t₁).2 = (↑t₂).2) :
                    t₁ = t₂
                    theorem LO.Modal.MaximalConsistentTableau.ne₁_of_ne {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t₁ t₂ : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    t₁ t₂(↑t₁).1 (↑t₂).1
                    theorem LO.Modal.MaximalConsistentTableau.ne₂_of_ne {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t₁ t₂ : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    t₁ t₂(↑t₁).2 (↑t₂).2
                    theorem LO.Modal.MaximalConsistentTableau.intro_equality {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t₁ t₂ : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] (h₁ : ∀ {φ : Formula α}, φ (↑t₁).1φ (↑t₂).1) (h₂ : ∀ {φ : Formula α}, φ (↑t₁).2φ (↑t₂).2) :
                    t₁ = t₂
                    theorem LO.Modal.MaximalConsistentTableau.iff_provable_include₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {T : Set (Formula α)} :
                    T *⊢[𝓢] φ ∀ (t : MaximalConsistentTableau 𝓢), T (↑t).1φ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_provable_mem₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    𝓢 φ ∀ (t : MaximalConsistentTableau 𝓢), φ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.mdp_mem₁ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] (hφψ : φ ψ (↑t).1) ( : φ (↑t).1) :
                    ψ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.mdp_mem₁_provable {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] (hφψ : 𝓢 φ ψ) ( : φ (↑t).1) :
                    ψ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.mdp_mem₂_provable {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] (hφψ : 𝓢 φ ψ) :
                    ψ (↑t).2φ (↑t).2
                    @[simp]
                    theorem LO.Modal.MaximalConsistentTableau.mem₁_verum {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    (↑t).1
                    @[simp]
                    theorem LO.Modal.MaximalConsistentTableau.not_mem₂_verum {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    (↑t).2
                    @[simp]
                    theorem LO.Modal.MaximalConsistentTableau.not_mem₁_falsum {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    (↑t).1
                    @[simp]
                    theorem LO.Modal.MaximalConsistentTableau.mem₂_falsum {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] :
                    (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_and {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ ψ (↑t).1 φ (↑t).1 ψ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_and {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ ψ (↑t).2 φ (↑t).2 ψ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_conj₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {Γ : List (Formula α)} :
                    Γ (↑t).1 φΓ, φ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_fconj {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {Γ : Finset (Formula α)} :
                    Γ.conj (↑t).1 Γ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_conj₂ {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {Γ : List (Formula α)} :
                    Γ (↑t).2 φΓ, φ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_fconj {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {Γ : Finset (Formula α)} :
                    Γ.conj (↑t).2 φΓ, φ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_or {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ ψ (↑t).1 φ (↑t).1 ψ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_or {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ ψ (↑t).2 φ (↑t).2 ψ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_disj {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {Γ : List (Formula α)} :
                    Γ (↑t).1 φΓ, φ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_disj {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {Γ : List (Formula α)} :
                    Γ (↑t).2 φΓ, φ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_fdisj {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {Γ : Finset (Formula α)} :
                    Γ.disj (↑t).2 Γ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_imp {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ ψ (↑t).1 φ (↑t).2 ψ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_imp' {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ ψ (↑t).1 φ (↑t).1ψ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_imp {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ ψ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ ψ (↑t).2 φ (↑t).1 ψ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_neg {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ (↑t).1 φ (↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_neg' {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ (↑t).1 φ(↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_neg {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ (↑t).2 φ (↑t).1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_neg' {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] :
                    φ (↑t).2 φ(↑t).2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_boxItr {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {n : } [Entailment.K 𝓢] :
                    □^[n]φ (↑t).1 ∀ {t' : MaximalConsistentTableau 𝓢}, (□⁻¹^[n]'(↑t).1) (↑t').1φ (↑t').1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_box {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] [Entailment.K 𝓢] :
                    φ (↑t).1 ∀ {t' : MaximalConsistentTableau 𝓢}, □⁻¹'(↑t).1 (↑t').1φ (↑t').1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_boxItr {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {n : } [Entailment.K 𝓢] :
                    □^[n]φ (↑t).2 ∃ (t' : MaximalConsistentTableau 𝓢), (□⁻¹^[n]'(↑t).1) (↑t').1 φ (↑t').2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_box {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] [Entailment.K 𝓢] :
                    φ (↑t).2 ∃ (t' : MaximalConsistentTableau 𝓢), □⁻¹'(↑t).1 (↑t').1 φ (↑t').2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_diaItr {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {n : } [Entailment.K 𝓢] :
                    ◇^[n]φ (↑t).1 ∃ (t' : MaximalConsistentTableau 𝓢), (□⁻¹^[n]'(↑t).1) (↑t').1 φ (↑t').1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₁_dia {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] [Entailment.K 𝓢] :
                    φ (↑t).1 ∃ (t' : MaximalConsistentTableau 𝓢), □⁻¹'(↑t).1 (↑t').1 φ (↑t').1
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_diaItr {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {n : } [Entailment.K 𝓢] :
                    ◇^[n]φ (↑t).2 ∀ (t' : MaximalConsistentTableau 𝓢), (□⁻¹^[n]'(↑t).1) (↑t').1φ (↑t').2
                    theorem LO.Modal.MaximalConsistentTableau.iff_mem₂_dia {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} {φ : Formula α} {t : MaximalConsistentTableau 𝓢} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] [Entailment.K 𝓢] :
                    φ (↑t).2 ∀ (t' : MaximalConsistentTableau 𝓢), □⁻¹'(↑t).1 (↑t').1φ (↑t').2
                    theorem Set.exists_of_ne {α : Type u_1} {s t : Set α} (h : s t) :
                    ∃ (x : α), x s xt xs x t
                    theorem LO.Modal.MaximalConsistentTableau.exists₁₂_of_ne {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {y z : MaximalConsistentTableau 𝓢} (eyz : y z) :
                    φ₂(↑y).1, φ₂ (↑z).2
                    theorem LO.Modal.MaximalConsistentTableau.exists₂₁_of_ne {α : Type u_1} {S : Type u_2} [Entailment S (Formula α)] {𝓢 : S} [Entailment.Cl 𝓢] [DecidableEq α] [Encodable α] {y z : MaximalConsistentTableau 𝓢} (eyz : y z) :
                    φ₁(↑y).2, φ₁ (↑z).1