Documentation

Logic.IntProp.Heyting.Semantics

@[simp]
theorem LO.IntProp.Formula.hVal_atom {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) (a : α) :
@[simp]
theorem LO.IntProp.Formula.hVal_verum {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) :
@[simp]
theorem LO.IntProp.Formula.hVal_falsum {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) :
@[simp]
theorem LO.IntProp.Formula.hVal_neg {α : Type u} {ℍ : Type u_1} [HeytingAlgebra ] (v : α) (p : LO.IntProp.Formula α) :
structure LO.IntProp.HeytingSemantics (α : Type u_1) :
Type (max u_1 (u_2 + 1))
Instances For
    Equations
    • LO.IntProp.HeytingSemantics.instCoeSortType = { coe := LO.IntProp.HeytingSemantics.Algebra }
    Equations
    • .instHeytingAlgebraAlgebra = .heyting
    Equations
    Instances For
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_and {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (p : LO.IntProp.Formula α) (q : LO.IntProp.Formula α) :
      .hVal (p q) = .hVal p .hVal q
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_or {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (p : LO.IntProp.Formula α) (q : LO.IntProp.Formula α) :
      .hVal (p q) = .hVal p .hVal q
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_imply {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (p : LO.IntProp.Formula α) (q : LO.IntProp.Formula α) :
      .hVal (p q) = .hVal p .hVal q
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_iff {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (p : LO.IntProp.Formula α) (q : LO.IntProp.Formula α) :
      .hVal (p q) = bihimp (.hVal p) (.hVal q)
      @[simp]
      theorem LO.IntProp.HeytingSemantics.hVal_not {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (p : LO.IntProp.Formula α) :
      .hVal (p) = (.hVal p)
      Equations
      Equations
      • LO.IntProp.HeytingSemantics.instTopFormula = { realize_top := }
      Equations
      • LO.IntProp.HeytingSemantics.instBotFormula = { realize_bot := }
      Equations
      • LO.IntProp.HeytingSemantics.instAndFormula = { realize_and := }
      @[simp]
      theorem LO.IntProp.HeytingSemantics.val_imply {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) {p : LO.IntProp.Formula α} {q : LO.IntProp.Formula α} :
      p q .hVal p .hVal q
      @[simp]
      theorem LO.IntProp.HeytingSemantics.val_iff {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) {p : LO.IntProp.Formula α} {q : LO.IntProp.Formula α} :
      p q .hVal p = .hVal q
      @[simp]
      theorem LO.IntProp.HeytingSemantics.val_or {α : Type u} (ℍ : LO.IntProp.HeytingSemantics α) (p : LO.IntProp.Formula α) (q : LO.IntProp.Formula α) :
      p q .hVal p .hVal q =
      Equations
      • LO.IntProp.HeytingSemantics.instIntuitionisticHilbertFormula = LO.System.Intuitionistic.mk