Documentation

Init.Data.List.Impl

Tail recursive implementations for List definitions. #

Many of the proofs require theorems about Array, so these are in a separate file to minimize imports.

Basic List operations. #

The following operations are already tail-recursive, and do not need @[csimp] replacements: get, foldl, beq, isEqv, reverse, elem (and hence contains), drop, dropWhile, partition, isPrefixOf, isPrefixOf?, find?, findSome?, lookup, any (and hence or), all (and hence and) , range, eraseDups, eraseReps, span, groupBy.

The following operations are still missing @[csimp] replacements: concat, zipWithAll.

The following operations are not recursive to begin with (or are defined in terms of recursive primitives): isEmpty, isSuffixOf, isSuffixOf?, rotateLeft, rotateRight, insert, zip, enum, minimum?, maximum?, and removeAll.

The following operations are given @[csimp] replacements below: length, set, map, filter, filterMap, foldr, append, bind, join, replicate, take, takeWhile, dropLast, replace, erase, eraseIdx, zipWith, unzip, iota, enumFrom, intersperse, and intercalate.

length #

theorem List.length_add_eq_lengthTRAux {α : Type u_1} (as : List α) (n : Nat) :
as.length + n = as.lengthTRAux n

set #

@[inline]
def List.setTR {α : Type u_1} (l : List α) (n : Nat) (a : α) :
List α

Tail recursive version of List.set.

Equations
def List.setTR.go {α : Type u_1} (l : List α) (a : α) :
List αNatArray αList α

Auxiliary for setTR: setTR.go l a xs n acc = acc.toList ++ set xs a, unless n ≥ l.length in which case it returns l

Equations
theorem List.set_eq_setTR.go (α : Type u_1) (l : List α) (a : α) (acc : Array α) (xs : List α) (n : Nat) :
l = acc.data ++ xsList.setTR.go l a xs n acc = acc.data ++ xs.set n a

map #

@[inline]
def List.mapTR {α : Type u_1} {β : Type u_2} (f : αβ) (as : List α) :
List β

Tail-recursive version of List.map.

Equations
@[specialize #[]]
def List.mapTR.loop {α : Type u_1} {β : Type u_2} (f : αβ) :
List αList βList β
Equations
theorem List.mapTR_loop_eq {α : Type u_1} {β : Type u_2} (f : αβ) (as : List α) (bs : List β) :
List.mapTR.loop f as bs = bs.reverse ++ List.map f as

filter #

@[inline]
def List.filterTR {α : Type u_1} (p : αBool) (as : List α) :
List α

Tail-recursive version of List.filter.

Equations
@[specialize #[]]
def List.filterTR.loop {α : Type u_1} (p : αBool) :
List αList αList α
Equations
theorem List.filterTR_loop_eq {α : Type u_1} (p : αBool) (as : List α) (bs : List α) :
List.filterTR.loop p as bs = bs.reverse ++ List.filter p as

filterMap #

@[inline]
def List.filterMapTR {α : Type u_1} {β : Type u_2} (f : αOption β) (l : List α) :
List β

Tail recursive version of filterMap.

Equations
@[specialize #[]]
def List.filterMapTR.go {α : Type u_1} {β : Type u_2} (f : αOption β) :
List αArray βList β

Auxiliary for filterMap: filterMap.go f l = acc.toList ++ filterMap f l

Equations
theorem List.filterMap_eq_filterMapTR.go (α : Type u_2) (β : Type u_1) (f : αOption β) (as : List α) (acc : Array β) :
List.filterMapTR.go f as acc = acc.data ++ List.filterMap f as

foldr #

@[specialize #[]]
def List.foldrTR {α : Type u_1} {β : Type u_2} (f : αββ) (init : β) (l : List α) :
β

Tail recursive version of List.foldr.

Equations

bind #

@[inline]
def List.bindTR {α : Type u_1} {β : Type u_2} (as : List α) (f : αList β) :
List β

Tail recursive version of List.bind.

Equations
@[specialize #[]]
def List.bindTR.go {α : Type u_1} {β : Type u_2} (f : αList β) :
List αArray βList β

Auxiliary for bind: bind.go f as = acc.toList ++ bind f as

Equations
theorem List.bind_eq_bindTR.go (α : Type u_2) (β : Type u_1) (f : αList β) (as : List α) (acc : Array β) :
List.bindTR.go f as acc = acc.data ++ as.bind f

join #

@[inline]
def List.joinTR {α : Type u_1} (l : List (List α)) :
List α

Tail recursive version of List.join.

Equations
  • l.joinTR = l.bindTR id

replicate #

def List.replicateTR {α : Type u} (n : Nat) (a : α) :
List α

Tail-recursive version of List.replicate.

Equations
def List.replicateTR.loop {α : Type u} (a : α) :
NatList αList α
Equations
theorem List.replicateTR_loop_eq :
∀ {α : Type u_1} {a : α} {acc : List α} (n : Nat), List.replicateTR.loop a n acc = List.replicate n a ++ acc

Sublists #

take #

@[inline]
def List.takeTR {α : Type u_1} (n : Nat) (l : List α) :
List α

Tail recursive version of List.take.

Equations
@[specialize #[]]
def List.takeTR.go {α : Type u_1} (l : List α) :
List αNatArray αList α

Auxiliary for take: take.go l xs n acc = acc.toList ++ take n xs, unless n ≥ xs.length in which case it returns l.

Equations

takeWhile #

@[inline]
def List.takeWhileTR {α : Type u_1} (p : αBool) (l : List α) :
List α

Tail recursive version of List.takeWhile.

Equations
@[specialize #[]]
def List.takeWhileTR.go {α : Type u_1} (p : αBool) (l : List α) :
List αArray αList α

Auxiliary for takeWhile: takeWhile.go p l xs acc = acc.toList ++ takeWhile p xs, unless no element satisfying p is found in xs in which case it returns l.

Equations

dropLast #

@[inline]
def List.dropLastTR {α : Type u_1} (l : List α) :
List α

Tail recursive version of dropLast.

Equations

Manipulating elements #

replace #

@[inline]
def List.replaceTR {α : Type u_1} [BEq α] (l : List α) (b : α) (c : α) :
List α

Tail recursive version of List.replace.

Equations
@[specialize #[]]
def List.replaceTR.go {α : Type u_1} [BEq α] (l : List α) (b : α) (c : α) :
List αArray αList α

Auxiliary for replace: replace.go l b c xs acc = acc.toList ++ replace xs b c, unless b is not found in xs in which case it returns l.

Equations

erase #

@[inline]
def List.eraseTR {α : Type u_1} [BEq α] (l : List α) (a : α) :
List α

Tail recursive version of List.erase.

Equations
def List.eraseTR.go {α : Type u_1} [BEq α] (l : List α) (a : α) :
List αArray αList α

Auxiliary for eraseTR: eraseTR.go l a xs acc = acc.toList ++ erase xs a, unless a is not present in which case it returns l

Equations

eraseIdx #

@[inline]
def List.eraseIdxTR {α : Type u_1} (l : List α) (n : Nat) :
List α

Tail recursive version of List.eraseIdx.

Equations
def List.eraseIdxTR.go {α : Type u_1} (l : List α) :
List αNatArray αList α

Auxiliary for eraseIdxTR: eraseIdxTR.go l n xs acc = acc.toList ++ eraseIdx xs a, unless a is not present in which case it returns l

Equations

Zippers #

zipWith #

@[inline]
def List.zipWithTR {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) (as : List α) (bs : List β) :
List γ

Tail recursive version of List.zipWith.

Equations
def List.zipWithTR.go {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : αβγ) :
List αList βArray γList γ

Auxiliary for zipWith: zipWith.go f as bs acc = acc.toList ++ zipWith f as bs

Equations
theorem List.zipWith_eq_zipWithTR.go (α : Type u_3) (β : Type u_2) (γ : Type u_1) (f : αβγ) (as : List α) (bs : List β) (acc : Array γ) :
List.zipWithTR.go f as bs acc = acc.data ++ List.zipWith f as bs

unzip #

def List.unzipTR {α : Type u_1} {β : Type u_2} (l : List (α × β)) :
List α × List β

Tail recursive version of List.unzip.

Equations
  • l.unzipTR = List.foldr (fun (x : α × β) (x_1 : List α × List β) => match x with | (a, b) => match x_1 with | (al, bl) => (a :: al, b :: bl)) ([], []) l

Ranges and enumeration #

iota #

def List.iotaTR (n : Nat) :

Tail-recursive version of List.iota.

Equations
Equations

enumFrom #

def List.enumFromTR {α : Type u_1} (n : Nat) (l : List α) :
List (Nat × α)

Tail recursive version of List.enumFrom.

Equations
  • One or more equations did not get rendered due to their size.
theorem List.enumFrom_eq_enumFromTR.go (α : Type u_1) (l : List α) (n : Nat) :
let f := fun (a : α) (x : Nat × List (Nat × α)) => match x with | (n, acc) => (n - 1, (n - 1, a) :: acc); List.foldr f (n + l.length, []) l = (n, List.enumFrom n l)

Other list operations #

intersperse #

def List.intersperseTR {α : Type u_1} (sep : α) :
List αList α

Tail recursive version of List.intersperse.

Equations

intercalate #

def List.intercalateTR {α : Type u_1} (sep : List α) :
List (List α)List α

Tail recursive version of List.intercalate.

Equations
def List.intercalateTR.go {α : Type u_1} (sep : Array α) :
List αList (List α)Array αList α

Auxiliary for intercalateTR: intercalateTR.go sep x xs acc = acc.toList ++ intercalate sep.toList (x::xs)

Equations
theorem List.intercalate_eq_intercalateTR.go (α : Type u_1) (sep : List α) {acc : Array α} {x : List α} (xs : List (List α)) :
List.intercalateTR.go (List.toArray sep) x xs acc = acc.data ++ (List.intersperse sep (x :: xs)).join