Documentation

Logic.Modal.Boxdot.GL_Grz

theorem LO.Modal.Kripke.iff_boxdot_reflexive_closure {α : Type u_2} {p : LO.Modal.Formula α} {F : LO.Kripke.Frame} {V : LO.Kripke.Valuation F α} {x : { Frame := F, Valuation := V }.World} :
LO.Modal.Formula.Kripke.Satisfies { Frame := F, Valuation := V } x (p) LO.Modal.Formula.Kripke.Satisfies { Frame := F^=, Valuation := V } x p
theorem LO.Modal.Kripke.iff_reflexivize_irreflexivize {α : Type u_2} {p : LO.Modal.Formula α} {F : LO.Kripke.Frame} (F_Refl : Reflexive F.Rel) {x : F.World} {V : LO.Kripke.Valuation F α} :
LO.Modal.Formula.Kripke.Satisfies { Frame := F, Valuation := V } x p LO.Modal.Formula.Kripke.Satisfies { Frame := F^≠^=, Valuation := V } x p
Equations
  • LO.Modal.instBoxdotPropertyGrzGL = { bdp := }