Documentation

Logic.Modal.Kripke.Preservation

def LO.Modal.Kripke.ModalEquivalent {α : Type u_1} {M₁ : LO.Kripke.Model α} {M₂ : LO.Kripke.Model α} (w₁ : M₁.World) (w₂ : M₂.World) :
Equations
Instances For
    theorem LO.Modal.Kripke.modal_equivalent_of_bisimilar {α : Type u_1} {M₁ : LO.Kripke.Model α} {M₂ : LO.Kripke.Model α} {x₁ : M₁.World} {x₂ : M₂.World} (Bi : M₁ M₂) (bisx : Bi.toRel x₁ x₂) :
    x₁ x₂
    theorem LO.Modal.Kripke.modal_equivalence_of_modal_morphism {α : Type u_1} {M₁ : LO.Kripke.Model α} {M₂ : LO.Kripke.Model α} (f : M₁ →ₚ M₂) (w : M₁.World) :
    w f.toFun w
    theorem LO.Modal.Kripke.iff_formula_valid_on_frame_surjective_morphism {α : Type u_1} {F₁ : LO.Kripke.Frame} {F₂ : LO.Kripke.Frame} {p : LO.Modal.Formula α} (f : F₁ →ₚ F₂) (f_surjective : Function.Surjective f.toFun) :
    F₁#α pF₂#α p
    theorem LO.Modal.Kripke.iff_theory_valid_on_frame_surjective_morphism {α : Type u_1} {F₁ : LO.Kripke.Frame} {F₂ : LO.Kripke.Frame} {T : Set (LO.Modal.Formula α)} (f : F₁ →ₚ F₂) (f_surjective : Function.Surjective f.toFun) :
    F₁#α ⊧* TF₂#α ⊧* T
    theorem LO.Modal.Kripke.modal_equivalent_at_root_on_generated_model {α : Type u_1} (M : LO.Kripke.Model α) (M_trans : Transitive M.Frame.Rel) (r : M.World) :
    r, r