Documentation

Logic.Modal.PLoN.Semantics

@[reducible, inline]
noncomputable abbrev LO.Modal.PLoN.Frame.default {α : Type u_1} {F : LO.Modal.PLoN.Frame α} :
F.World
Equations
  • LO.Modal.PLoN.Frame.default = .some
Equations
  • LO.Modal.PLoN.instCoeFunFrameForallFormulaForallWorldForallProp = { coe := LO.Modal.PLoN.Frame.Rel }
@[reducible, inline]
abbrev LO.Modal.PLoN.Frame.Rel' {α : Type u_1} {F : LO.Modal.PLoN.Frame α} (p : LO.Modal.Formula α) (x : F.World) (y : F.World) :
Equations
Equations
  • One or more equations did not get rendered due to their size.
structure LO.Modal.PLoN.FiniteFrame (α : Type u_1) extends LO.Modal.PLoN.Frame :
Type (max u_1 (u_2 + 1))
Instances For
Equations
@[reducible, inline]
abbrev LO.Modal.PLoN.Valuation {α : Type u_2} (F : LO.Modal.PLoN.Frame α✝) (α : Type u_1) :
Type (max u_1 u_3)
Equations
Equations
  • LO.Modal.PLoN.instCoeSortModelType = { coe := LO.Modal.PLoN.Model.World }
theorem LO.Modal.Formula.PLoN.Satisfies.box_def {α : Type u_1} {M : LO.Modal.PLoN.Model α} {x : M.World} {p : LO.Modal.Formula α} :
x p ∀ (y : M.Frame.World), LO.Modal.PLoN.Frame.Rel' p x yy p
theorem LO.Modal.Formula.PLoN.Satisfies.not_def {α : Type u_1} {M : LO.Modal.PLoN.Model α} {x : M.World} {p : LO.Modal.Formula α} :
x p ¬x p
Equations
  • LO.Modal.Formula.PLoN.Satisfies.instNotWorld = { realize_not := }
theorem LO.Modal.Formula.PLoN.Satisfies.imp_def {α : Type u_1} {M : LO.Modal.PLoN.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} :
x p q x px q
Equations
  • LO.Modal.Formula.PLoN.Satisfies.instImpWorld = { realize_imp := }
theorem LO.Modal.Formula.PLoN.Satisfies.or_def {α : Type u_1} {M : LO.Modal.PLoN.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} :
x p q x p x q
Equations
  • LO.Modal.Formula.PLoN.Satisfies.instOrWorld = { realize_or := }
theorem LO.Modal.Formula.PLoN.Satisfies.and_def {α : Type u_1} {M : LO.Modal.PLoN.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} :
x p q x p x q
Equations
  • LO.Modal.Formula.PLoN.Satisfies.instAndWorld = { realize_and := }
Equations
  • LO.Modal.Formula.PLoN.Satisfies.instTarskiWorld = LO.Semantics.Tarski.mk
Equations
Equations
  • LO.Modal.Formula.PLoN.ValidOnModel.instBotModel = { realize_bot := }
Equations
Equations
Equations
  • LO.Modal.Formula.PLoN.ValidOnFrame.instBotFrame = { realize_bot := }
theorem LO.Modal.Formula.PLoN.ValidOnFrame.mdp {α : Type u_1} {F : LO.Modal.PLoN.Frame α} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hpq : F p q) (hp : F p) :
F q
Equations
theorem LO.Modal.Formula.PLoN.ValidOnFrameClass.mdp {α : Type u_1} {𝔽 : LO.Modal.PLoN.FrameClass α} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hpq : 𝔽 p q) (hp : 𝔽 p) :
𝔽 q
Equations
theorem LO.Modal.PLoN.N_defines {α : Type u_1} :
𝐍.DefinesPLoNFrameClass (LO.Modal.PLoN.AllFrameClass α)