Documentation

Logic.Vorspiel.Collection

instance instConsSet (α : Type u_1) :
Cons α (Set α)
Equations
instance instConsList (α : Type u_1) :
Cons α (List α)
Equations
instance instConsMultiset (α : Type u_1) :
Cons α (Multiset α)
Equations
instance instConsFinsetOfDecidableEq (α : Type u_1) [DecidableEq α] :
Cons α (Finset α)
Equations
class Collection (β : outParam (Type u_1)) (α : Type u_2) extends Membership , HasSubset , EmptyCollection , Cons :
Type (max u_1 u_2)
  • mem : βαProp
  • Subset : ααProp
  • emptyCollection : α
  • cons : βαα
  • subset_iff : ∀ {a b : α}, a b xa, x b
  • not_mem_empty : ∀ (x : β), x
  • mem_cons_iff : ∀ {x z : β} {a : α}, x cons z a x = z x a
Instances
theorem Collection.subset_iff {β : outParam (Type u_1)} {α : Type u_2} [self : Collection β α] {a : α} {b : α} :
a b xa, x b
@[simp]
theorem Collection.not_mem_empty {β : outParam (Type u_1)} {α : Type u_2} [self : Collection β α] (x : β) :
x
@[simp]
theorem Collection.mem_cons_iff {β : outParam (Type u_1)} {α : Type u_2} [self : Collection β α] {x : β} {z : β} {a : α} :
x cons z a x = z x a
instance Set.collection {α : Type u_1} :
Collection α (Set α)
Equations
instance List.collection {α : Type u_1} :
Equations
instance Multiset.collection {α : Type u_1} :
Equations
instance Finset.collection {α : Type u_1} [DecidableEq α] :
Equations
def Collection.set {β : Type u_1} {α : Type u_2} [Collection β α] :
αSet β
Equations
@[simp]
theorem Collection.mem_set_iff {β : Type u_1} {α : Type u_2} [Collection β α] {x : β} {a : α} :
theorem Collection.subset_iff_set_subset_set {β : Type u_1} {α : Type u_2} [Collection β α] {a : α} {b : α} :
@[simp]
theorem Collection.subset_refl {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
a a
theorem Collection.subset_trans {β : Type u_1} {α : Type u_2} [Collection β α] {a : α} {b : α} {c : α} (ha : a b) (hb : b c) :
a c
theorem Collection.subset_antisymm {β : Type u_1} {α : Type u_2} [Collection β α] {a : α} {b : α} (ha : a b) (hb : b a) :
@[simp]
theorem Collection.empty_subset {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
@[simp]
theorem Collection.mem_cons {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) (x : β) :
x cons x a
@[simp]
theorem Collection.subset_cons {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) (x : β) :
a cons x a
@[simp]
theorem Collection.set_empty {β : Type u_1} {α : Type u_2} [Collection β α] :
@[simp]
theorem Collection.set_cons {β : Type u_1} {α : Type u_2} [Collection β α] (z : β) (a : α) :
def Collection.Finite {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
Equations
@[simp]
theorem Collection.empty_finite {β : Type u_1} {α : Type u_2} [Collection β α] :
theorem Collection.Finite.of_subset {β : Type u_1} {α : Type u_2} [Collection β α] {a : α} {b : α} (ha : Collection.Finite a) (h : b a) :
@[simp]
theorem Collection.cons_finite_iff {β : Type u_1} {α : Type u_2} [Collection β α] {z : β} {a : α} :
def Collection.addList {β : Type u_1} {α : Type u_2} [Collection β α] (a : α) :
List βα
Equations
def List.toCollection {β : Type u_1} {α : Type u_2} [Collection β α] :
List βα
Equations
  • [].toCollection =
  • (x_1 :: xs).toCollection = cons x_1 xs.toCollection
noncomputable def Finset.toCollection {β : Type u_1} {α : Type u_2} [Collection β α] :
Finset βα
Equations
  • s.toCollection = s.toList.toCollection
@[simp]
theorem Collection.mem_list_toCollection {β : Type u_1} {α : Type u_2} [Collection β α] {x : β} {l : List β} :
x l.toCollection x l
@[simp]
theorem Collection.mem_finset_toCollection {β : Type u_1} {α : Type u_2} [Collection β α] {x : β} {s : Finset β} :
x s.toCollection x s
@[simp]
theorem Collection.list_toCollection_finite {β : Type u_1} {α : Type u_2} [Collection β α] (l : List β) :
Collection.Finite l.toCollection
@[simp]
theorem Collection.finset_toCollection_finite {β : Type u_1} {α : Type u_2} [Collection β α] (s : Finset β) :
Collection.Finite s.toCollection
theorem Set.cons_eq {α : Type u_1} (a : α) (s : Set α) :
cons a s = insert a s
@[simp]
theorem Set.collection_set {α : Type u_1} (s : Set α) :
@[simp]
theorem Set.collection_finite_iff {α : Type u_1} (s : Set α) :